Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096516723> ?p ?o ?g. }
- W2096516723 abstract "Sentiment analysis refers to the extraction of the polarity of source materials, such as financial news. However, measuring positive tone requires the correct classification of sentences that are negated, i.e. The negation scopes. For example, around 4.74% of all sentences in German ad hoc announcements contain negations. To predict the corresponding negation scope, related literature commonly utilizes two approaches, namely, rule-based algorithms and machine learning. Nevertheless, a thorough comparison is missing, especially for the sentiment analysis of financial news. To close this gap, this paper uses German ad hoc announcements as a common example of financial news in order to pursue a two-sided evaluation. First, we compare the predictive performance using a manually-labeled dataset. Second, we examine how detecting negation scopes can improve the accuracy of sentiment analysis. In this instance, rule-based algorithms produce superior results, resulting in an improvement of up to 9.80% in the correlation between news sentiment and stock market returns." @default.
- W2096516723 created "2016-06-24" @default.
- W2096516723 creator A5048633988 @default.
- W2096516723 creator A5064008689 @default.
- W2096516723 creator A5081442873 @default.
- W2096516723 date "2015-01-01" @default.
- W2096516723 modified "2023-09-26" @default.
- W2096516723 title "Enhancing Sentiment Analysis of Financial News by Detecting Negation Scopes" @default.
- W2096516723 cites W1113829303 @default.
- W2096516723 cites W139617144 @default.
- W2096516723 cites W1574901103 @default.
- W2096516723 cites W1663973292 @default.
- W2096516723 cites W1992039201 @default.
- W2096516723 cites W2044252347 @default.
- W2096516723 cites W2065403368 @default.
- W2096516723 cites W2081687495 @default.
- W2096516723 cites W2084046180 @default.
- W2096516723 cites W2097726431 @default.
- W2096516723 cites W2098162425 @default.
- W2096516723 cites W2098368736 @default.
- W2096516723 cites W2125838338 @default.
- W2096516723 cites W2139686600 @default.
- W2096516723 cites W2139865360 @default.
- W2096516723 cites W2140548485 @default.
- W2096516723 cites W2150102617 @default.
- W2096516723 cites W2220055025 @default.
- W2096516723 cites W2271835578 @default.
- W2096516723 cites W3122944446 @default.
- W2096516723 cites W3123492911 @default.
- W2096516723 cites W3123601295 @default.
- W2096516723 cites W3124932990 @default.
- W2096516723 cites W3125314372 @default.
- W2096516723 cites W3125952890 @default.
- W2096516723 cites W43192923 @default.
- W2096516723 cites W805717466 @default.
- W2096516723 cites W995630646 @default.
- W2096516723 doi "https://doi.org/10.1109/hicss.2015.119" @default.
- W2096516723 hasPublicationYear "2015" @default.
- W2096516723 type Work @default.
- W2096516723 sameAs 2096516723 @default.
- W2096516723 citedByCount "32" @default.
- W2096516723 countsByYear W20965167232014 @default.
- W2096516723 countsByYear W20965167232015 @default.
- W2096516723 countsByYear W20965167232016 @default.
- W2096516723 countsByYear W20965167232017 @default.
- W2096516723 countsByYear W20965167232018 @default.
- W2096516723 countsByYear W20965167232019 @default.
- W2096516723 countsByYear W20965167232020 @default.
- W2096516723 countsByYear W20965167232021 @default.
- W2096516723 countsByYear W20965167232022 @default.
- W2096516723 countsByYear W20965167232023 @default.
- W2096516723 crossrefType "proceedings-article" @default.
- W2096516723 hasAuthorship W2096516723A5048633988 @default.
- W2096516723 hasAuthorship W2096516723A5064008689 @default.
- W2096516723 hasAuthorship W2096516723A5081442873 @default.
- W2096516723 hasConcept C119857082 @default.
- W2096516723 hasConcept C138885662 @default.
- W2096516723 hasConcept C151730666 @default.
- W2096516723 hasConcept C154775046 @default.
- W2096516723 hasConcept C154945302 @default.
- W2096516723 hasConcept C199360897 @default.
- W2096516723 hasConcept C204321447 @default.
- W2096516723 hasConcept C2185349 @default.
- W2096516723 hasConcept C23123220 @default.
- W2096516723 hasConcept C2778012447 @default.
- W2096516723 hasConcept C2780299701 @default.
- W2096516723 hasConcept C2780762169 @default.
- W2096516723 hasConcept C41008148 @default.
- W2096516723 hasConcept C41895202 @default.
- W2096516723 hasConcept C66402592 @default.
- W2096516723 hasConcept C86803240 @default.
- W2096516723 hasConceptScore W2096516723C119857082 @default.
- W2096516723 hasConceptScore W2096516723C138885662 @default.
- W2096516723 hasConceptScore W2096516723C151730666 @default.
- W2096516723 hasConceptScore W2096516723C154775046 @default.
- W2096516723 hasConceptScore W2096516723C154945302 @default.
- W2096516723 hasConceptScore W2096516723C199360897 @default.
- W2096516723 hasConceptScore W2096516723C204321447 @default.
- W2096516723 hasConceptScore W2096516723C2185349 @default.
- W2096516723 hasConceptScore W2096516723C23123220 @default.
- W2096516723 hasConceptScore W2096516723C2778012447 @default.
- W2096516723 hasConceptScore W2096516723C2780299701 @default.
- W2096516723 hasConceptScore W2096516723C2780762169 @default.
- W2096516723 hasConceptScore W2096516723C41008148 @default.
- W2096516723 hasConceptScore W2096516723C41895202 @default.
- W2096516723 hasConceptScore W2096516723C66402592 @default.
- W2096516723 hasConceptScore W2096516723C86803240 @default.
- W2096516723 hasLocation W20965167231 @default.
- W2096516723 hasOpenAccess W2096516723 @default.
- W2096516723 hasPrimaryLocation W20965167231 @default.
- W2096516723 hasRelatedWork W2139686600 @default.
- W2096516723 hasRelatedWork W2140548485 @default.
- W2096516723 hasRelatedWork W2252065932 @default.
- W2096516723 hasRelatedWork W2592379743 @default.
- W2096516723 hasRelatedWork W2913237333 @default.
- W2096516723 hasRelatedWork W3107474891 @default.
- W2096516723 hasRelatedWork W3192794374 @default.
- W2096516723 hasRelatedWork W4200526184 @default.
- W2096516723 hasRelatedWork W4285815787 @default.
- W2096516723 hasRelatedWork W165017432 @default.