Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096577530> ?p ?o ?g. }
- W2096577530 endingPage "297" @default.
- W2096577530 startingPage "257" @default.
- W2096577530 abstract "We study the motion of non-diffusive, passive particles within steady, three-dimensional vortex breakdown bubbles in a closed cylindrical container with a rotating bottom. The velocity fields are obtained by solving numerically the three-dimensional Navier–Stokes equations. We clarify the relationship between the manifold structure of axisymmetric (ideal) vortex breakdown bubbles and those of the three-dimensional real-life (laboratory) flow fields, which exhibit chaotic particle paths. We show that the upstream and downstream fixed hyperbolic points in the former are transformed into spiral-out and spiral-in saddles, respectively, in the latter. Material elements passing repeatedly through the two saddle foci undergo intense stretching and folding, leading to the growth of infinitely many Smale horseshoes and sensitive dependence on initial conditions via the mechanism discovered by šil'nikov (1965). Chaotic šil'nikov orbits spiral upward (from the spiral-in to the spiral-out saddle) around the axis and then downward near the surface, wrapping around the toroidal region in the interior of the bubble. Poincaré maps reveal that the dynamics of this region is rich and consistent with what we would generically anticipate for a mildly perturbed, volume-preserving, three-dimensional dynamical system (MacKay 1994; Mezić & Wiggins 1994 a ). Nested KAM-tori, cantori, and periodic islands are found embedded within stochastic regions. We calculate residence times of upstream-originating non-diffusive particles and show that when mapped to initial release locations the resulting maps exhibit fractal properties. We argue that there exists a Cantor set of initial conditions that leads to arbitrarily long residence times within the breakdown region. We also show that the emptying of the bubble does not take place in a continuous manner but rather in a sequence of discrete bursting events during which clusters of particles exit the bubble at once. A remarkable finding in this regard is that the rate at which an initial population of particles exits the breakdown region is described by the devil's staircase distribution, a fractal curve that has been already shown to describe a number of other chaotic physical systems." @default.
- W2096577530 created "2016-06-24" @default.
- W2096577530 creator A5014584215 @default.
- W2096577530 creator A5037609700 @default.
- W2096577530 creator A5084823710 @default.
- W2096577530 date "2001-09-25" @default.
- W2096577530 modified "2023-10-16" @default.
- W2096577530 title "Chaotic advection in three-dimensional stationary vortex-breakdown bubbles: šil'nikov's chaos and the devil's staircase" @default.
- W2096577530 cites W1482836892 @default.
- W2096577530 cites W1608880886 @default.
- W2096577530 cites W1609838751 @default.
- W2096577530 cites W1665713033 @default.
- W2096577530 cites W1963584623 @default.
- W2096577530 cites W1964668147 @default.
- W2096577530 cites W1965198132 @default.
- W2096577530 cites W1966157303 @default.
- W2096577530 cites W1969909879 @default.
- W2096577530 cites W1969916574 @default.
- W2096577530 cites W1974384835 @default.
- W2096577530 cites W1974628665 @default.
- W2096577530 cites W1977438596 @default.
- W2096577530 cites W1977743814 @default.
- W2096577530 cites W1984545476 @default.
- W2096577530 cites W1985168710 @default.
- W2096577530 cites W1986103149 @default.
- W2096577530 cites W1987833660 @default.
- W2096577530 cites W1990387270 @default.
- W2096577530 cites W1992300103 @default.
- W2096577530 cites W1992671409 @default.
- W2096577530 cites W1994856519 @default.
- W2096577530 cites W1995275303 @default.
- W2096577530 cites W1997260956 @default.
- W2096577530 cites W2003083671 @default.
- W2096577530 cites W2004021828 @default.
- W2096577530 cites W2004429826 @default.
- W2096577530 cites W2008995486 @default.
- W2096577530 cites W2011509678 @default.
- W2096577530 cites W2012440002 @default.
- W2096577530 cites W2013149988 @default.
- W2096577530 cites W2014283680 @default.
- W2096577530 cites W2020280818 @default.
- W2096577530 cites W2033376959 @default.
- W2096577530 cites W2037279909 @default.
- W2096577530 cites W2043346919 @default.
- W2096577530 cites W2044331691 @default.
- W2096577530 cites W2051733417 @default.
- W2096577530 cites W2052062860 @default.
- W2096577530 cites W2052212595 @default.
- W2096577530 cites W2058193771 @default.
- W2096577530 cites W2062267302 @default.
- W2096577530 cites W2065531484 @default.
- W2096577530 cites W2066018261 @default.
- W2096577530 cites W2071488597 @default.
- W2096577530 cites W2073500348 @default.
- W2096577530 cites W2074980237 @default.
- W2096577530 cites W2076327952 @default.
- W2096577530 cites W2077930649 @default.
- W2096577530 cites W2079665590 @default.
- W2096577530 cites W2085988745 @default.
- W2096577530 cites W2086896560 @default.
- W2096577530 cites W2088736713 @default.
- W2096577530 cites W2089627539 @default.
- W2096577530 cites W2094095042 @default.
- W2096577530 cites W2094996633 @default.
- W2096577530 cites W2100850487 @default.
- W2096577530 cites W2103036899 @default.
- W2096577530 cites W2109868662 @default.
- W2096577530 cites W2112758539 @default.
- W2096577530 cites W2117633103 @default.
- W2096577530 cites W2122333748 @default.
- W2096577530 cites W2128213353 @default.
- W2096577530 cites W2130510089 @default.
- W2096577530 cites W2133759591 @default.
- W2096577530 cites W2138212611 @default.
- W2096577530 cites W2141037210 @default.
- W2096577530 cites W2143119495 @default.
- W2096577530 cites W2154482846 @default.
- W2096577530 cites W2157105140 @default.
- W2096577530 cites W2162677466 @default.
- W2096577530 cites W2163569827 @default.
- W2096577530 cites W2164240519 @default.
- W2096577530 cites W2168945626 @default.
- W2096577530 cites W2768221535 @default.
- W2096577530 cites W3043786007 @default.
- W2096577530 cites W3141418954 @default.
- W2096577530 cites W3150064140 @default.
- W2096577530 doi "https://doi.org/10.1017/s0022112001005286" @default.
- W2096577530 hasPublicationYear "2001" @default.
- W2096577530 type Work @default.
- W2096577530 sameAs 2096577530 @default.
- W2096577530 citedByCount "77" @default.
- W2096577530 countsByYear W20965775302012 @default.
- W2096577530 countsByYear W20965775302013 @default.
- W2096577530 countsByYear W20965775302014 @default.
- W2096577530 countsByYear W20965775302015 @default.
- W2096577530 countsByYear W20965775302016 @default.
- W2096577530 countsByYear W20965775302017 @default.
- W2096577530 countsByYear W20965775302018 @default.