Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096609500> ?p ?o ?g. }
- W2096609500 endingPage "413" @default.
- W2096609500 startingPage "402" @default.
- W2096609500 abstract "Magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients and is essential for diagnosing the disease and monitoring its progression. In practice, lesion load is often quantified by either manual or semi-automated segmentation of MRI, which is time-consuming, costly, and associated with large inter- and intra-observer variability. We propose OASIS is Automated Statistical Inference for Segmentation (OASIS), an automated statistical method for segmenting MS lesions in MRI studies. We use logistic regression models incorporating multiple MRI modalities to estimate voxel-level probabilities of lesion presence. Intensity-normalized T1-weighted, T2-weighted, fluid-attenuated inversion recovery and proton density volumes from 131 MRI studies (98 MS subjects, 33 healthy subjects) with manual lesion segmentations were used to train and validate our model. Within this set, OASIS detected lesions with a partial area under the receiver operating characteristic curve for clinically relevant false positive rates of 1% and below of 0.59% (95% CI; [0.50%, 0.67%]) at the voxel level. An experienced MS neuroradiologist compared these segmentations to those produced by LesionTOADS, an image segmentation software that provides segmentation of both lesions and normal brain structures. For lesions, OASIS out-performed LesionTOADS in 74% (95% CI: [65%, 82%]) of cases for the 98 MS subjects. To further validate the method, we applied OASIS to 169 MRI studies acquired at a separate center. The neuroradiologist again compared the OASIS segmentations to those from LesionTOADS. For lesions, OASIS ranked higher than LesionTOADS in 77% (95% CI: [71%, 83%]) of cases. For a randomly selected subset of 50 of these studies, one additional radiologist and one neurologist also scored the images. Within this set, the neuroradiologist ranked OASIS higher than LesionTOADS in 76% (95% CI: [64%, 88%]) of cases, the neurologist 66% (95% CI: [52%, 78%]) and the radiologist 52% (95% CI: [38%, 66%]). OASIS obtains the estimated probability for each voxel to be part of a lesion by weighting each imaging modality with coefficient weights. These coefficients are explicit, obtained using standard model fitting techniques, and can be reused in other imaging studies. This fully automated method allows sensitive and specific detection of lesion presence and may be rapidly applied to large collections of images." @default.
- W2096609500 created "2016-06-24" @default.
- W2096609500 creator A5005891853 @default.
- W2096609500 creator A5024618722 @default.
- W2096609500 creator A5024904743 @default.
- W2096609500 creator A5027986231 @default.
- W2096609500 creator A5037974362 @default.
- W2096609500 creator A5061851273 @default.
- W2096609500 creator A5062928592 @default.
- W2096609500 creator A5067643576 @default.
- W2096609500 creator A5079671980 @default.
- W2096609500 creator A5089030792 @default.
- W2096609500 date "2013-01-01" @default.
- W2096609500 modified "2023-09-25" @default.
- W2096609500 title "OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI" @default.
- W2096609500 cites W1973457617 @default.
- W2096609500 cites W1978859837 @default.
- W2096609500 cites W1987869189 @default.
- W2096609500 cites W1989600436 @default.
- W2096609500 cites W2000278813 @default.
- W2096609500 cites W2007146250 @default.
- W2096609500 cites W2008101963 @default.
- W2096609500 cites W2013013146 @default.
- W2096609500 cites W2021204548 @default.
- W2096609500 cites W2025641888 @default.
- W2096609500 cites W2047440597 @default.
- W2096609500 cites W2048074616 @default.
- W2096609500 cites W2071415177 @default.
- W2096609500 cites W2085829822 @default.
- W2096609500 cites W2110436599 @default.
- W2096609500 cites W2118277450 @default.
- W2096609500 cites W2120841849 @default.
- W2096609500 cites W2124537635 @default.
- W2096609500 cites W2138575170 @default.
- W2096609500 cites W2145314569 @default.
- W2096609500 cites W2146531642 @default.
- W2096609500 cites W2157848968 @default.
- W2096609500 cites W2163219935 @default.
- W2096609500 cites W2171652727 @default.
- W2096609500 cites W4246454767 @default.
- W2096609500 doi "https://doi.org/10.1016/j.nicl.2013.03.002" @default.
- W2096609500 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3777691" @default.
- W2096609500 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24179794" @default.
- W2096609500 hasPublicationYear "2013" @default.
- W2096609500 type Work @default.
- W2096609500 sameAs 2096609500 @default.
- W2096609500 citedByCount "80" @default.
- W2096609500 countsByYear W20966095002013 @default.
- W2096609500 countsByYear W20966095002014 @default.
- W2096609500 countsByYear W20966095002015 @default.
- W2096609500 countsByYear W20966095002016 @default.
- W2096609500 countsByYear W20966095002017 @default.
- W2096609500 countsByYear W20966095002018 @default.
- W2096609500 countsByYear W20966095002019 @default.
- W2096609500 countsByYear W20966095002020 @default.
- W2096609500 countsByYear W20966095002021 @default.
- W2096609500 countsByYear W20966095002022 @default.
- W2096609500 countsByYear W20966095002023 @default.
- W2096609500 crossrefType "journal-article" @default.
- W2096609500 hasAuthorship W2096609500A5005891853 @default.
- W2096609500 hasAuthorship W2096609500A5024618722 @default.
- W2096609500 hasAuthorship W2096609500A5024904743 @default.
- W2096609500 hasAuthorship W2096609500A5027986231 @default.
- W2096609500 hasAuthorship W2096609500A5037974362 @default.
- W2096609500 hasAuthorship W2096609500A5061851273 @default.
- W2096609500 hasAuthorship W2096609500A5062928592 @default.
- W2096609500 hasAuthorship W2096609500A5067643576 @default.
- W2096609500 hasAuthorship W2096609500A5079671980 @default.
- W2096609500 hasAuthorship W2096609500A5089030792 @default.
- W2096609500 hasBestOaLocation W20966095001 @default.
- W2096609500 hasConcept C101070640 @default.
- W2096609500 hasConcept C118552586 @default.
- W2096609500 hasConcept C124504099 @default.
- W2096609500 hasConcept C126322002 @default.
- W2096609500 hasConcept C126838900 @default.
- W2096609500 hasConcept C142724271 @default.
- W2096609500 hasConcept C143409427 @default.
- W2096609500 hasConcept C153180895 @default.
- W2096609500 hasConcept C154945302 @default.
- W2096609500 hasConcept C2780640218 @default.
- W2096609500 hasConcept C2781156865 @default.
- W2096609500 hasConcept C2909330790 @default.
- W2096609500 hasConcept C2989005 @default.
- W2096609500 hasConcept C41008148 @default.
- W2096609500 hasConcept C54170458 @default.
- W2096609500 hasConcept C58471807 @default.
- W2096609500 hasConcept C71924100 @default.
- W2096609500 hasConcept C89600930 @default.
- W2096609500 hasConceptScore W2096609500C101070640 @default.
- W2096609500 hasConceptScore W2096609500C118552586 @default.
- W2096609500 hasConceptScore W2096609500C124504099 @default.
- W2096609500 hasConceptScore W2096609500C126322002 @default.
- W2096609500 hasConceptScore W2096609500C126838900 @default.
- W2096609500 hasConceptScore W2096609500C142724271 @default.
- W2096609500 hasConceptScore W2096609500C143409427 @default.
- W2096609500 hasConceptScore W2096609500C153180895 @default.
- W2096609500 hasConceptScore W2096609500C154945302 @default.
- W2096609500 hasConceptScore W2096609500C2780640218 @default.