Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096616810> ?p ?o ?g. }
- W2096616810 endingPage "483" @default.
- W2096616810 startingPage "473" @default.
- W2096616810 abstract "This paper presents an application of fuzzy-logic techniques to the reversible compression of grayscale images. With reference to a spatial differential pulse code modulation (DPCM) scheme, prediction may be accomplished in a space-varying fashion either as adaptive, i.e., with predictors recalculated at each pixel, or as classified, in which image blocks or pixels are labeled in a number of classes, for which fitting predictors are calculated. Here, an original tradeoff is proposed; a space-varying linear-regression prediction is obtained through fuzzy-logic techniques as a problem of matching pursuit, in which a predictor different for every pixel is obtained as an expansion in series of a finite number of prototype nonorthogonal predictors, that are calculated in a fuzzy fashion as well. To enhance entropy coding, the spatial prediction is followed by context-based statistical modeling of prediction errors. A thorough comparison with the most advanced methods in the literature, as well as an investigation of performance trends and computing times to work parameters, highlight the advantages of the proposed fuzzy approach to data compression." @default.
- W2096616810 created "2016-06-24" @default.
- W2096616810 creator A5035398406 @default.
- W2096616810 creator A5052624884 @default.
- W2096616810 creator A5061007254 @default.
- W2096616810 date "2002-08-01" @default.
- W2096616810 modified "2023-09-25" @default.
- W2096616810 title "Fuzzy logic-based matching pursuits for lossless predictive coding of still images" @default.
- W2096616810 cites W1497245278 @default.
- W2096616810 cites W1518500973 @default.
- W2096616810 cites W1964566904 @default.
- W2096616810 cites W1983074315 @default.
- W2096616810 cites W1998456063 @default.
- W2096616810 cites W2035687186 @default.
- W2096616810 cites W2043940039 @default.
- W2096616810 cites W2056915456 @default.
- W2096616810 cites W2091344404 @default.
- W2096616810 cites W2091886411 @default.
- W2096616810 cites W2095668662 @default.
- W2096616810 cites W2096445898 @default.
- W2096616810 cites W2099732180 @default.
- W2096616810 cites W2101490159 @default.
- W2096616810 cites W2102548382 @default.
- W2096616810 cites W2108457651 @default.
- W2096616810 cites W2109395398 @default.
- W2096616810 cites W2111216493 @default.
- W2096616810 cites W2112707104 @default.
- W2096616810 cites W2113076747 @default.
- W2096616810 cites W2113801896 @default.
- W2096616810 cites W2114163697 @default.
- W2096616810 cites W2120688485 @default.
- W2096616810 cites W2124815861 @default.
- W2096616810 cites W2129652681 @default.
- W2096616810 cites W2129931573 @default.
- W2096616810 cites W2131499030 @default.
- W2096616810 cites W2131757244 @default.
- W2096616810 cites W2137923603 @default.
- W2096616810 cites W2138674095 @default.
- W2096616810 cites W2139225839 @default.
- W2096616810 cites W2140129192 @default.
- W2096616810 cites W2149874402 @default.
- W2096616810 cites W2151308902 @default.
- W2096616810 cites W2151693816 @default.
- W2096616810 cites W2153638435 @default.
- W2096616810 cites W2154662452 @default.
- W2096616810 cites W2156373110 @default.
- W2096616810 cites W2158347320 @default.
- W2096616810 cites W2162445324 @default.
- W2096616810 cites W2167638481 @default.
- W2096616810 cites W2168243774 @default.
- W2096616810 cites W2169567041 @default.
- W2096616810 cites W2172289734 @default.
- W2096616810 cites W4238957295 @default.
- W2096616810 doi "https://doi.org/10.1109/tfuzz.2002.800691" @default.
- W2096616810 hasPublicationYear "2002" @default.
- W2096616810 type Work @default.
- W2096616810 sameAs 2096616810 @default.
- W2096616810 citedByCount "26" @default.
- W2096616810 countsByYear W20966168102012 @default.
- W2096616810 countsByYear W20966168102013 @default.
- W2096616810 countsByYear W20966168102014 @default.
- W2096616810 countsByYear W20966168102016 @default.
- W2096616810 countsByYear W20966168102017 @default.
- W2096616810 countsByYear W20966168102019 @default.
- W2096616810 countsByYear W20966168102023 @default.
- W2096616810 crossrefType "journal-article" @default.
- W2096616810 hasAuthorship W2096616810A5035398406 @default.
- W2096616810 hasAuthorship W2096616810A5052624884 @default.
- W2096616810 hasAuthorship W2096616810A5061007254 @default.
- W2096616810 hasConcept C106301342 @default.
- W2096616810 hasConcept C11413529 @default.
- W2096616810 hasConcept C121332964 @default.
- W2096616810 hasConcept C153180895 @default.
- W2096616810 hasConcept C154945302 @default.
- W2096616810 hasConcept C160633673 @default.
- W2096616810 hasConcept C160987145 @default.
- W2096616810 hasConcept C33923547 @default.
- W2096616810 hasConcept C41008148 @default.
- W2096616810 hasConcept C58166 @default.
- W2096616810 hasConcept C62520636 @default.
- W2096616810 hasConcept C761482 @default.
- W2096616810 hasConcept C76155785 @default.
- W2096616810 hasConcept C78201319 @default.
- W2096616810 hasConcept C78548338 @default.
- W2096616810 hasConcept C81081738 @default.
- W2096616810 hasConceptScore W2096616810C106301342 @default.
- W2096616810 hasConceptScore W2096616810C11413529 @default.
- W2096616810 hasConceptScore W2096616810C121332964 @default.
- W2096616810 hasConceptScore W2096616810C153180895 @default.
- W2096616810 hasConceptScore W2096616810C154945302 @default.
- W2096616810 hasConceptScore W2096616810C160633673 @default.
- W2096616810 hasConceptScore W2096616810C160987145 @default.
- W2096616810 hasConceptScore W2096616810C33923547 @default.
- W2096616810 hasConceptScore W2096616810C41008148 @default.
- W2096616810 hasConceptScore W2096616810C58166 @default.
- W2096616810 hasConceptScore W2096616810C62520636 @default.
- W2096616810 hasConceptScore W2096616810C761482 @default.
- W2096616810 hasConceptScore W2096616810C76155785 @default.