Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096617164> ?p ?o ?g. }
- W2096617164 endingPage "59" @default.
- W2096617164 startingPage "29" @default.
- W2096617164 abstract "This paper introduces a new framework for modelling the joint development over time of mortality rates in a pair of related populations with the primary aim of producing consistent mortality forecasts for the two populations. The primary aim is achieved by combining a number of recent and novel developments in stochastic mortality modelling, but these, additionally, provide us with a number of side benefits and insights for stochastic mortality modelling. By way of example, we propose an Age-Period-Cohort model which incorporates a mean-reverting stochastic spread that allows for different trends in mortality improvement rates in the short-run, but parallel improvements in the long run. Second, we fit the model using a Bayesian framework that allows us to combine estimation of the unobservable state variables and the parameters of the stochastic processes driving them into a single procedure. Key benefits of this include dampening down of the impact of Poisson variation in death counts, full allowance for paramater uncertainty, and the flexibility to deal with missing data. The framework is designed for large populations coupled with a small sub-population and is applied to the England & Wales national and Continuous Mortality Investigation assured lives males populations. We compare and contrast results based on the two-population approach with single-population results." @default.
- W2096617164 created "2016-06-24" @default.
- W2096617164 creator A5004297700 @default.
- W2096617164 creator A5006854054 @default.
- W2096617164 creator A5008622625 @default.
- W2096617164 creator A5022341381 @default.
- W2096617164 creator A5055037773 @default.
- W2096617164 date "2011-05-01" @default.
- W2096617164 modified "2023-09-26" @default.
- W2096617164 title "Bayesian Stochastic Mortality Modelling for Two Populations" @default.
- W2096617164 cites W1513833992 @default.
- W2096617164 cites W1514533495 @default.
- W2096617164 cites W163565376 @default.
- W2096617164 cites W1683170990 @default.
- W2096617164 cites W1781698703 @default.
- W2096617164 cites W1973225444 @default.
- W2096617164 cites W1985805839 @default.
- W2096617164 cites W2000857598 @default.
- W2096617164 cites W2019191223 @default.
- W2096617164 cites W2024807232 @default.
- W2096617164 cites W2040375181 @default.
- W2096617164 cites W2042636783 @default.
- W2096617164 cites W2049781056 @default.
- W2096617164 cites W2050846110 @default.
- W2096617164 cites W2057268325 @default.
- W2096617164 cites W2061958304 @default.
- W2096617164 cites W2077269078 @default.
- W2096617164 cites W2080490750 @default.
- W2096617164 cites W2087717346 @default.
- W2096617164 cites W2092630520 @default.
- W2096617164 cites W2101518413 @default.
- W2096617164 cites W2108450721 @default.
- W2096617164 cites W2109915710 @default.
- W2096617164 cites W2115041626 @default.
- W2096617164 cites W2116285604 @default.
- W2096617164 cites W2116841087 @default.
- W2096617164 cites W2117845723 @default.
- W2096617164 cites W2120297822 @default.
- W2096617164 cites W2123209443 @default.
- W2096617164 cites W2126771422 @default.
- W2096617164 cites W2130416410 @default.
- W2096617164 cites W2131560241 @default.
- W2096617164 cites W2134603091 @default.
- W2096617164 cites W2134747174 @default.
- W2096617164 cites W2139570988 @default.
- W2096617164 cites W2142070442 @default.
- W2096617164 cites W2158712340 @default.
- W2096617164 cites W2161200583 @default.
- W2096617164 cites W2166688047 @default.
- W2096617164 cites W3121383629 @default.
- W2096617164 cites W3121587660 @default.
- W2096617164 cites W3121942314 @default.
- W2096617164 cites W3122615382 @default.
- W2096617164 cites W3125590267 @default.
- W2096617164 cites W3126106951 @default.
- W2096617164 cites W57879723 @default.
- W2096617164 doi "https://doi.org/10.2143/ast.41.1.2084385" @default.
- W2096617164 hasPublicationYear "2011" @default.
- W2096617164 type Work @default.
- W2096617164 sameAs 2096617164 @default.
- W2096617164 citedByCount "42" @default.
- W2096617164 countsByYear W20966171642012 @default.
- W2096617164 countsByYear W20966171642013 @default.
- W2096617164 countsByYear W20966171642014 @default.
- W2096617164 countsByYear W20966171642015 @default.
- W2096617164 countsByYear W20966171642016 @default.
- W2096617164 countsByYear W20966171642017 @default.
- W2096617164 countsByYear W20966171642018 @default.
- W2096617164 countsByYear W20966171642019 @default.
- W2096617164 countsByYear W20966171642020 @default.
- W2096617164 countsByYear W20966171642021 @default.
- W2096617164 countsByYear W20966171642022 @default.
- W2096617164 crossrefType "posted-content" @default.
- W2096617164 hasAuthorship W2096617164A5004297700 @default.
- W2096617164 hasAuthorship W2096617164A5006854054 @default.
- W2096617164 hasAuthorship W2096617164A5008622625 @default.
- W2096617164 hasAuthorship W2096617164A5022341381 @default.
- W2096617164 hasAuthorship W2096617164A5055037773 @default.
- W2096617164 hasConcept C100906024 @default.
- W2096617164 hasConcept C105795698 @default.
- W2096617164 hasConcept C107673813 @default.
- W2096617164 hasConcept C127491075 @default.
- W2096617164 hasConcept C144024400 @default.
- W2096617164 hasConcept C149782125 @default.
- W2096617164 hasConcept C149923435 @default.
- W2096617164 hasConcept C162324750 @default.
- W2096617164 hasConcept C179755657 @default.
- W2096617164 hasConcept C21547014 @default.
- W2096617164 hasConcept C2779268580 @default.
- W2096617164 hasConcept C2780598303 @default.
- W2096617164 hasConcept C2780695315 @default.
- W2096617164 hasConcept C2908647359 @default.
- W2096617164 hasConcept C33923547 @default.
- W2096617164 hasConcept C41008148 @default.
- W2096617164 hasConceptScore W2096617164C100906024 @default.
- W2096617164 hasConceptScore W2096617164C105795698 @default.
- W2096617164 hasConceptScore W2096617164C107673813 @default.
- W2096617164 hasConceptScore W2096617164C127491075 @default.