Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096671750> ?p ?o ?g. }
- W2096671750 endingPage "133" @default.
- W2096671750 startingPage "87" @default.
- W2096671750 abstract "Recent research has shown that surprisingly rich models of human activity can be learned from GPS (positional) data. However, most effort to date has concentrated on modeling single individuals or statistical properties of groups of people. Moreover, prior work focused solely on modeling actual successful executions (and not failed or attempted executions) of the activities of interest. We, in contrast, take on the task of understanding human interactions, attempted interactions, and intentions from noisy sensor data in a fully relational multi-agent setting. We use a real-world game of capture the flag to illustrate our approach in a well-defined domain that involves many distinct cooperative and competitive joint activities. We model the domain using Markov logic, a statistical-relational language, and learn a theory that jointly denoises the data and infers occurrences of high-level activities, such as a player capturing an enemy. Our unified model combines constraints imposed by the geometry of the game area, the motion model of the players, and by the rules and dynamics of the game in a probabilistically and logically sound fashion. We show that while it may be impossible to directly detect a multi-agent activity due to sensor noise or malfunction, the occurrence of the activity can still be inferred by considering both its impact on the future behaviors of the people involved as well as the events that could have preceded it. Further, we show that given a model of successfully performed multi-agent activities, along with a set of examples of failed attempts at the same activities, our system automatically learns an augmented model that is capable of recognizing success and failure, as well as goals of peoples actions with high accuracy. We compare our approach with other alternatives and show that our unified model, which takes into account not only relationships among individual players, but also relationships among activities over the entire length of a game, although more computationally costly, is significantly more accurate. Finally, we demonstrate that explicitly modeling unsuccessful attempts boosts performance on other important recognition tasks." @default.
- W2096671750 created "2016-06-24" @default.
- W2096671750 creator A5007902508 @default.
- W2096671750 creator A5081476701 @default.
- W2096671750 date "2012-01-31" @default.
- W2096671750 modified "2023-09-27" @default.
- W2096671750 title "Location-Based Reasoning about Complex Multi-Agent Behavior" @default.
- W2096671750 cites W136734405 @default.
- W2096671750 cites W144486471 @default.
- W2096671750 cites W1493363822 @default.
- W2096671750 cites W1504110645 @default.
- W2096671750 cites W1510043092 @default.
- W2096671750 cites W1512990509 @default.
- W2096671750 cites W1515653062 @default.
- W2096671750 cites W1538211826 @default.
- W2096671750 cites W1554232575 @default.
- W2096671750 cites W1559456074 @default.
- W2096671750 cites W1568033296 @default.
- W2096671750 cites W1576159843 @default.
- W2096671750 cites W1579566807 @default.
- W2096671750 cites W1584308190 @default.
- W2096671750 cites W1592888114 @default.
- W2096671750 cites W1599188306 @default.
- W2096671750 cites W1601600618 @default.
- W2096671750 cites W160274533 @default.
- W2096671750 cites W1604179321 @default.
- W2096671750 cites W1607205948 @default.
- W2096671750 cites W1608748481 @default.
- W2096671750 cites W1723714545 @default.
- W2096671750 cites W1735309676 @default.
- W2096671750 cites W1746680969 @default.
- W2096671750 cites W1774330103 @default.
- W2096671750 cites W1815494026 @default.
- W2096671750 cites W1860444933 @default.
- W2096671750 cites W1871193478 @default.
- W2096671750 cites W1979629649 @default.
- W2096671750 cites W1992270714 @default.
- W2096671750 cites W1992967856 @default.
- W2096671750 cites W1999167988 @default.
- W2096671750 cites W2008458232 @default.
- W2096671750 cites W2009155608 @default.
- W2096671750 cites W2016066610 @default.
- W2096671750 cites W203049729 @default.
- W2096671750 cites W206739251 @default.
- W2096671750 cites W2069090820 @default.
- W2096671750 cites W2088853743 @default.
- W2096671750 cites W2097730395 @default.
- W2096671750 cites W2100145144 @default.
- W2096671750 cites W2100526409 @default.
- W2096671750 cites W2101276256 @default.
- W2096671750 cites W2101335378 @default.
- W2096671750 cites W2105042294 @default.
- W2096671750 cites W2110575115 @default.
- W2096671750 cites W2117793845 @default.
- W2096671750 cites W2117955883 @default.
- W2096671750 cites W2119199958 @default.
- W2096671750 cites W2121075864 @default.
- W2096671750 cites W2122646361 @default.
- W2096671750 cites W2123167824 @default.
- W2096671750 cites W2123277412 @default.
- W2096671750 cites W2125027602 @default.
- W2096671750 cites W2126185296 @default.
- W2096671750 cites W2127936386 @default.
- W2096671750 cites W2130031580 @default.
- W2096671750 cites W2134906087 @default.
- W2096671750 cites W2137126099 @default.
- W2096671750 cites W2138460198 @default.
- W2096671750 cites W2139117248 @default.
- W2096671750 cites W2139575250 @default.
- W2096671750 cites W2140141795 @default.
- W2096671750 cites W2143157063 @default.
- W2096671750 cites W2143554828 @default.
- W2096671750 cites W2144429462 @default.
- W2096671750 cites W2147880316 @default.
- W2096671750 cites W2150678881 @default.
- W2096671750 cites W2150741878 @default.
- W2096671750 cites W2164524038 @default.
- W2096671750 cites W2166692930 @default.
- W2096671750 cites W2169650188 @default.
- W2096671750 cites W2169992051 @default.
- W2096671750 cites W2171634212 @default.
- W2096671750 cites W2188591582 @default.
- W2096671750 cites W2571600439 @default.
- W2096671750 cites W2591877817 @default.
- W2096671750 cites W2686568412 @default.
- W2096671750 cites W2767734520 @default.
- W2096671750 cites W2912206496 @default.
- W2096671750 cites W2952901684 @default.
- W2096671750 cites W2962804292 @default.
- W2096671750 cites W2977904728 @default.
- W2096671750 cites W3020921219 @default.
- W2096671750 cites W3099215870 @default.
- W2096671750 cites W3105206394 @default.
- W2096671750 cites W3147976114 @default.
- W2096671750 cites W46927669 @default.
- W2096671750 cites W47392883 @default.
- W2096671750 cites W65045497 @default.
- W2096671750 cites W2163363276 @default.