Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096764140> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2096764140 endingPage "130" @default.
- W2096764140 startingPage "119" @default.
- W2096764140 abstract "Artificial neural network (ANN) based regression methods have been introduced for modelling censored survival data to account for complex prognostic patterns. In the framework of ANN extensions of generalized linear models for survival data, PLANN is a partial logistic ANN, suitable for smoothed discrete hazard estimation as a function of time and covariates. An extension of PLANN for competing risks analysis (PLANNCR) is now proposed for discrete or grouped survival times, resorting to the multinomial likelihood. PLANNCR is built by assigning input nodes to the explanatory variables with the time interval treated as an ordinal variable. The logistic function is used as activation for the hidden nodes of the network, whereas the softmax, which corresponds to the canonical link of generalized linear models for polytomous regression, is adopted for multiple output nodes, to provide a smoothed estimation of discrete conditional event probabilities for each event. The Kullback-Leibler distance is used as error function for the target vectors, amounting to half of the deviance of a multinomial logistic regression model. PLANNCR can jointly model non-linear, non-proportional and non-additive effects on cause-specific hazards (CSHs). The degree of smoothing is modulated by the number of hidden nodes and penalization of the error function (weight decay). Model optimisation is achieved by quasi-Newton algorithms, while non-linear cross-validation (NCV) and the Network Information Criterion (NIC) were adopted for model selection. PLANNCR was applied to data on 1793 women with primary invasive breast cancer, histologically N-, who underwent surgery at the Milan Cancer Institute between 1981 and 1986. Differential effects of covariates and time on the shape of the CSH for the three main failure causes, namely intra-breast tumor recurrences, distant metastases and contralateral breast cancer, have been enlightened. PLANNCR can be suitably adopted in an exploratory framework for a thorough evaluation of the disease dynamics in the presence of competing risks." @default.
- W2096764140 created "2016-06-24" @default.
- W2096764140 creator A5032371821 @default.
- W2096764140 creator A5049635189 @default.
- W2096764140 creator A5063583733 @default.
- W2096764140 creator A5067840825 @default.
- W2096764140 date "2006-06-01" @default.
- W2096764140 modified "2023-09-23" @default.
- W2096764140 title "Artificial neural network for the joint modelling of discrete cause-specific hazards" @default.
- W2096764140 cites W1481519903 @default.
- W2096764140 cites W2011995986 @default.
- W2096764140 cites W2061908550 @default.
- W2096764140 cites W2073023604 @default.
- W2096764140 cites W2085857101 @default.
- W2096764140 cites W2091989291 @default.
- W2096764140 cites W2098545770 @default.
- W2096764140 cites W2100947646 @default.
- W2096764140 cites W2127425427 @default.
- W2096764140 cites W2133873291 @default.
- W2096764140 cites W2150459579 @default.
- W2096764140 cites W2157619121 @default.
- W2096764140 cites W2165080652 @default.
- W2096764140 cites W2253350979 @default.
- W2096764140 cites W2317412231 @default.
- W2096764140 cites W2332678999 @default.
- W2096764140 cites W4244776886 @default.
- W2096764140 cites W4247399915 @default.
- W2096764140 doi "https://doi.org/10.1016/j.artmed.2006.01.004" @default.
- W2096764140 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16730963" @default.
- W2096764140 hasPublicationYear "2006" @default.
- W2096764140 type Work @default.
- W2096764140 sameAs 2096764140 @default.
- W2096764140 citedByCount "24" @default.
- W2096764140 countsByYear W20967641402012 @default.
- W2096764140 countsByYear W20967641402013 @default.
- W2096764140 countsByYear W20967641402014 @default.
- W2096764140 countsByYear W20967641402015 @default.
- W2096764140 countsByYear W20967641402016 @default.
- W2096764140 countsByYear W20967641402017 @default.
- W2096764140 countsByYear W20967641402019 @default.
- W2096764140 countsByYear W20967641402021 @default.
- W2096764140 countsByYear W20967641402022 @default.
- W2096764140 countsByYear W20967641402023 @default.
- W2096764140 crossrefType "journal-article" @default.
- W2096764140 hasAuthorship W2096764140A5032371821 @default.
- W2096764140 hasAuthorship W2096764140A5049635189 @default.
- W2096764140 hasAuthorship W2096764140A5063583733 @default.
- W2096764140 hasAuthorship W2096764140A5067840825 @default.
- W2096764140 hasConcept C105795698 @default.
- W2096764140 hasConcept C117568660 @default.
- W2096764140 hasConcept C119043178 @default.
- W2096764140 hasConcept C154945302 @default.
- W2096764140 hasConcept C33923547 @default.
- W2096764140 hasConcept C3770464 @default.
- W2096764140 hasConcept C41008148 @default.
- W2096764140 hasConcept C41587187 @default.
- W2096764140 hasConcept C50382708 @default.
- W2096764140 hasConcept C50644808 @default.
- W2096764140 hasConceptScore W2096764140C105795698 @default.
- W2096764140 hasConceptScore W2096764140C117568660 @default.
- W2096764140 hasConceptScore W2096764140C119043178 @default.
- W2096764140 hasConceptScore W2096764140C154945302 @default.
- W2096764140 hasConceptScore W2096764140C33923547 @default.
- W2096764140 hasConceptScore W2096764140C3770464 @default.
- W2096764140 hasConceptScore W2096764140C41008148 @default.
- W2096764140 hasConceptScore W2096764140C41587187 @default.
- W2096764140 hasConceptScore W2096764140C50382708 @default.
- W2096764140 hasConceptScore W2096764140C50644808 @default.
- W2096764140 hasIssue "2" @default.
- W2096764140 hasLocation W20967641401 @default.
- W2096764140 hasLocation W20967641402 @default.
- W2096764140 hasOpenAccess W2096764140 @default.
- W2096764140 hasPrimaryLocation W20967641401 @default.
- W2096764140 hasRelatedWork W1981691757 @default.
- W2096764140 hasRelatedWork W1982447720 @default.
- W2096764140 hasRelatedWork W2003103177 @default.
- W2096764140 hasRelatedWork W2027792818 @default.
- W2096764140 hasRelatedWork W2104184505 @default.
- W2096764140 hasRelatedWork W2115650046 @default.
- W2096764140 hasRelatedWork W2155829550 @default.
- W2096764140 hasRelatedWork W2572572583 @default.
- W2096764140 hasRelatedWork W2913891167 @default.
- W2096764140 hasRelatedWork W4384927492 @default.
- W2096764140 hasVolume "37" @default.
- W2096764140 isParatext "false" @default.
- W2096764140 isRetracted "false" @default.
- W2096764140 magId "2096764140" @default.
- W2096764140 workType "article" @default.