Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096772020> ?p ?o ?g. }
- W2096772020 abstract "In multi-output regression, the goal is to establish a mapping from inputs to multivariate outputs that are often assumed unknown. However, in practice, some outputs may become available. How can we use this extra information to improve our prediction on the remaining outputs? For example, can we use the job data released today to better predict the house sales data to be released tomorrow? Most previous approaches use a single generative model to model the joint predictive distribution of all outputs, based on which unknown outputs are inferred conditionally from the known outputs. However, learning such a joint distribution for all outputs is very challenging and also unnecessary if our goal is just to predict each of the unknown outputs. We propose a conditional model to directly model the conditional probability of a target output on both inputs and all other outputs. A simple generative model is used to infer other outputs if they are unknown. Both models only consist of standard regression predictors, for example, Gaussian process, which can be easily learned." @default.
- W2096772020 created "2016-06-24" @default.
- W2096772020 creator A5008708998 @default.
- W2096772020 date "2011-07-01" @default.
- W2096772020 modified "2023-09-25" @default.
- W2096772020 title "Conditional multi-output regression" @default.
- W2096772020 cites W1497675750 @default.
- W2096772020 cites W1516111018 @default.
- W2096772020 cites W1519342765 @default.
- W2096772020 cites W1571870753 @default.
- W2096772020 cites W1746819321 @default.
- W2096772020 cites W2030290736 @default.
- W2096772020 cites W2038381734 @default.
- W2096772020 cites W2082509948 @default.
- W2096772020 cites W2097618284 @default.
- W2096772020 cites W2116445618 @default.
- W2096772020 cites W2119187866 @default.
- W2096772020 cites W2119595900 @default.
- W2096772020 cites W2126986674 @default.
- W2096772020 cites W2130903752 @default.
- W2096772020 cites W2131479143 @default.
- W2096772020 cites W2135624048 @default.
- W2096772020 cites W2137512539 @default.
- W2096772020 cites W2143833218 @default.
- W2096772020 cites W2144752499 @default.
- W2096772020 cites W2148522164 @default.
- W2096772020 cites W2159080219 @default.
- W2096772020 cites W2161837235 @default.
- W2096772020 cites W2165644552 @default.
- W2096772020 cites W2168826207 @default.
- W2096772020 cites W2914746235 @default.
- W2096772020 cites W2460202770 @default.
- W2096772020 doi "https://doi.org/10.1109/ijcnn.2011.6033220" @default.
- W2096772020 hasPublicationYear "2011" @default.
- W2096772020 type Work @default.
- W2096772020 sameAs 2096772020 @default.
- W2096772020 citedByCount "4" @default.
- W2096772020 countsByYear W20967720202013 @default.
- W2096772020 countsByYear W20967720202018 @default.
- W2096772020 countsByYear W20967720202020 @default.
- W2096772020 crossrefType "proceedings-article" @default.
- W2096772020 hasAuthorship W2096772020A5008708998 @default.
- W2096772020 hasConcept C105795698 @default.
- W2096772020 hasConcept C111472728 @default.
- W2096772020 hasConcept C119857082 @default.
- W2096772020 hasConcept C121332964 @default.
- W2096772020 hasConcept C124101348 @default.
- W2096772020 hasConcept C138885662 @default.
- W2096772020 hasConcept C149782125 @default.
- W2096772020 hasConcept C152877465 @default.
- W2096772020 hasConcept C154945302 @default.
- W2096772020 hasConcept C161584116 @default.
- W2096772020 hasConcept C163716315 @default.
- W2096772020 hasConcept C167966045 @default.
- W2096772020 hasConcept C177384507 @default.
- W2096772020 hasConcept C18653775 @default.
- W2096772020 hasConcept C2780586882 @default.
- W2096772020 hasConcept C33923547 @default.
- W2096772020 hasConcept C39890363 @default.
- W2096772020 hasConcept C41008148 @default.
- W2096772020 hasConcept C43555835 @default.
- W2096772020 hasConcept C61326573 @default.
- W2096772020 hasConcept C62520636 @default.
- W2096772020 hasConcept C83546350 @default.
- W2096772020 hasConceptScore W2096772020C105795698 @default.
- W2096772020 hasConceptScore W2096772020C111472728 @default.
- W2096772020 hasConceptScore W2096772020C119857082 @default.
- W2096772020 hasConceptScore W2096772020C121332964 @default.
- W2096772020 hasConceptScore W2096772020C124101348 @default.
- W2096772020 hasConceptScore W2096772020C138885662 @default.
- W2096772020 hasConceptScore W2096772020C149782125 @default.
- W2096772020 hasConceptScore W2096772020C152877465 @default.
- W2096772020 hasConceptScore W2096772020C154945302 @default.
- W2096772020 hasConceptScore W2096772020C161584116 @default.
- W2096772020 hasConceptScore W2096772020C163716315 @default.
- W2096772020 hasConceptScore W2096772020C167966045 @default.
- W2096772020 hasConceptScore W2096772020C177384507 @default.
- W2096772020 hasConceptScore W2096772020C18653775 @default.
- W2096772020 hasConceptScore W2096772020C2780586882 @default.
- W2096772020 hasConceptScore W2096772020C33923547 @default.
- W2096772020 hasConceptScore W2096772020C39890363 @default.
- W2096772020 hasConceptScore W2096772020C41008148 @default.
- W2096772020 hasConceptScore W2096772020C43555835 @default.
- W2096772020 hasConceptScore W2096772020C61326573 @default.
- W2096772020 hasConceptScore W2096772020C62520636 @default.
- W2096772020 hasConceptScore W2096772020C83546350 @default.
- W2096772020 hasLocation W20967720201 @default.
- W2096772020 hasOpenAccess W2096772020 @default.
- W2096772020 hasPrimaryLocation W20967720201 @default.
- W2096772020 hasRelatedWork W1550862754 @default.
- W2096772020 hasRelatedWork W1654787807 @default.
- W2096772020 hasRelatedWork W1807223665 @default.
- W2096772020 hasRelatedWork W1968266349 @default.
- W2096772020 hasRelatedWork W2024228246 @default.
- W2096772020 hasRelatedWork W2040676386 @default.
- W2096772020 hasRelatedWork W2057331441 @default.
- W2096772020 hasRelatedWork W2118355803 @default.
- W2096772020 hasRelatedWork W2120715576 @default.
- W2096772020 hasRelatedWork W2270991741 @default.
- W2096772020 hasRelatedWork W2281212626 @default.