Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096793944> ?p ?o ?g. }
- W2096793944 endingPage "239" @default.
- W2096793944 startingPage "231" @default.
- W2096793944 abstract "The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (i) locally weighted regression (LOESS), (ii) additive models (GAMs), (iii) projection pursuit regression (PP/spl I.bar/REG), and (iv) recursive partitioning regression (RP/spl I.bar/REG). The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the waste isolation pilot plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or response surface regression when nonlinear relationships between model inputs and model predictions are present." @default.
- W2096793944 created "2016-06-24" @default.
- W2096793944 creator A5055485209 @default.
- W2096793944 creator A5079013017 @default.
- W2096793944 date "2005-12-04" @default.
- W2096793944 modified "2023-09-23" @default.
- W2096793944 title "Multiple predictor smoothing methods for sensitivity analysis" @default.
- W2096793944 cites W103650626 @default.
- W2096793944 cites W133902753 @default.
- W2096793944 cites W13686424 @default.
- W2096793944 cites W1423766661 @default.
- W2096793944 cites W14299924 @default.
- W2096793944 cites W1500064878 @default.
- W2096793944 cites W1554944419 @default.
- W2096793944 cites W1582567134 @default.
- W2096793944 cites W1594031697 @default.
- W2096793944 cites W159436435 @default.
- W2096793944 cites W1608198518 @default.
- W2096793944 cites W171677499 @default.
- W2096793944 cites W193425649 @default.
- W2096793944 cites W1965828298 @default.
- W2096793944 cites W1967758916 @default.
- W2096793944 cites W1967851656 @default.
- W2096793944 cites W1968936982 @default.
- W2096793944 cites W1973645162 @default.
- W2096793944 cites W1974619392 @default.
- W2096793944 cites W1986930878 @default.
- W2096793944 cites W1988244243 @default.
- W2096793944 cites W1990530820 @default.
- W2096793944 cites W1993317005 @default.
- W2096793944 cites W1995318043 @default.
- W2096793944 cites W2001195867 @default.
- W2096793944 cites W2010053796 @default.
- W2096793944 cites W2010295655 @default.
- W2096793944 cites W2011802426 @default.
- W2096793944 cites W2024081693 @default.
- W2096793944 cites W2024866217 @default.
- W2096793944 cites W2025892354 @default.
- W2096793944 cites W2037243764 @default.
- W2096793944 cites W2044771513 @default.
- W2096793944 cites W2046690910 @default.
- W2096793944 cites W2054805201 @default.
- W2096793944 cites W2055495034 @default.
- W2096793944 cites W2055591121 @default.
- W2096793944 cites W2060833676 @default.
- W2096793944 cites W2066267368 @default.
- W2096793944 cites W2076974777 @default.
- W2096793944 cites W2077306370 @default.
- W2096793944 cites W2078976684 @default.
- W2096793944 cites W2079025608 @default.
- W2096793944 cites W2081448601 @default.
- W2096793944 cites W2083328283 @default.
- W2096793944 cites W2088475681 @default.
- W2096793944 cites W2089520569 @default.
- W2096793944 cites W2091886411 @default.
- W2096793944 cites W2092509730 @default.
- W2096793944 cites W2102041666 @default.
- W2096793944 cites W2102201073 @default.
- W2096793944 cites W2103041471 @default.
- W2096793944 cites W2129249398 @default.
- W2096793944 cites W2132811257 @default.
- W2096793944 cites W2134042788 @default.
- W2096793944 cites W2138766682 @default.
- W2096793944 cites W2143400799 @default.
- W2096793944 cites W2150332776 @default.
- W2096793944 cites W2158734140 @default.
- W2096793944 cites W2169022172 @default.
- W2096793944 cites W2320554567 @default.
- W2096793944 cites W2322388717 @default.
- W2096793944 cites W2568283272 @default.
- W2096793944 cites W2797583072 @default.
- W2096793944 cites W2797969277 @default.
- W2096793944 cites W2913738118 @default.
- W2096793944 cites W2995161752 @default.
- W2096793944 cites W3014310718 @default.
- W2096793944 cites W3085162807 @default.
- W2096793944 cites W63802623 @default.
- W2096793944 doi "https://doi.org/10.5555/1162708.1162753" @default.
- W2096793944 hasPublicationYear "2005" @default.
- W2096793944 type Work @default.
- W2096793944 sameAs 2096793944 @default.
- W2096793944 citedByCount "2" @default.
- W2096793944 crossrefType "proceedings-article" @default.
- W2096793944 hasAuthorship W2096793944A5055485209 @default.
- W2096793944 hasAuthorship W2096793944A5079013017 @default.
- W2096793944 hasConcept C102366305 @default.
- W2096793944 hasConcept C105795698 @default.
- W2096793944 hasConcept C120068334 @default.
- W2096793944 hasConcept C127413603 @default.
- W2096793944 hasConcept C152877465 @default.
- W2096793944 hasConcept C203223496 @default.
- W2096793944 hasConcept C21200559 @default.
- W2096793944 hasConcept C24326235 @default.
- W2096793944 hasConcept C33923547 @default.
- W2096793944 hasConcept C3770464 @default.
- W2096793944 hasConcept C41008148 @default.
- W2096793944 hasConcept C48921125 @default.
- W2096793944 hasConcept C60316415 @default.