Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096829520> ?p ?o ?g. }
- W2096829520 endingPage "1600" @default.
- W2096829520 startingPage "1577" @default.
- W2096829520 abstract "Abstract. This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton−1), vegetables (300 m3 ton−1), roots and tubers (400 m3 ton−1), fruits (1000 m3 ton−1), cereals (1600 m3 ton−1), oil crops (2400 m3 ton−1) to pulses (4000 m3 ton−1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ−1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ−1, while this is 121 m3 GJ−1 for maize. The global water footprint related to crop production in the period 1996–2005 was 7404 billion cubic meters per year (78 % green, 12 % blue, 10 % grey). A large total water footprint was calculated for wheat (1087 Gm3 yr−1), rice (992 Gm3 yr−1) and maize (770 Gm3 yr−1). Wheat and rice have the largest blue water footprints, together accounting for 45 % of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr−1), China (967 Gm3 yr−1) and the USA (826 Gm3 yr−1). A relatively large total blue water footprint as a result of crop production is observed in the Indus river basin (117 Gm3 yr−1) and the Ganges river basin (108 Gm3 yr−1). The two basins together account for 25 % of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr−1 (91 % green, 9 % grey); irrigated agriculture has a water footprint of 2230 Gm3 yr−1 (48 % green, 40 % blue, 12 % grey)." @default.
- W2096829520 created "2016-06-24" @default.
- W2096829520 creator A5070637193 @default.
- W2096829520 creator A5080819705 @default.
- W2096829520 date "2011-05-25" @default.
- W2096829520 modified "2023-10-17" @default.
- W2096829520 title "The green, blue and grey water footprint of crops and derived crop products" @default.
- W2096829520 cites W1536836039 @default.
- W2096829520 cites W1551996627 @default.
- W2096829520 cites W1556073495 @default.
- W2096829520 cites W1611046331 @default.
- W2096829520 cites W1677549105 @default.
- W2096829520 cites W1964385596 @default.
- W2096829520 cites W1970891526 @default.
- W2096829520 cites W1982795703 @default.
- W2096829520 cites W1997991585 @default.
- W2096829520 cites W2001624483 @default.
- W2096829520 cites W2004302887 @default.
- W2096829520 cites W2004463386 @default.
- W2096829520 cites W2006847610 @default.
- W2096829520 cites W2013548909 @default.
- W2096829520 cites W2039033641 @default.
- W2096829520 cites W2044693537 @default.
- W2096829520 cites W2049834076 @default.
- W2096829520 cites W2067039847 @default.
- W2096829520 cites W2076274945 @default.
- W2096829520 cites W2092425318 @default.
- W2096829520 cites W2101154357 @default.
- W2096829520 cites W2102620549 @default.
- W2096829520 cites W2106396746 @default.
- W2096829520 cites W2110954194 @default.
- W2096829520 cites W2126950410 @default.
- W2096829520 cites W2136730059 @default.
- W2096829520 cites W2140082872 @default.
- W2096829520 cites W2156382101 @default.
- W2096829520 cites W2159642665 @default.
- W2096829520 cites W2170876967 @default.
- W2096829520 cites W2177123715 @default.
- W2096829520 cites W2291738616 @default.
- W2096829520 cites W4230761415 @default.
- W2096829520 doi "https://doi.org/10.5194/hess-15-1577-2011" @default.
- W2096829520 hasPublicationYear "2011" @default.
- W2096829520 type Work @default.
- W2096829520 sameAs 2096829520 @default.
- W2096829520 citedByCount "1434" @default.
- W2096829520 countsByYear W20968295202012 @default.
- W2096829520 countsByYear W20968295202013 @default.
- W2096829520 countsByYear W20968295202014 @default.
- W2096829520 countsByYear W20968295202015 @default.
- W2096829520 countsByYear W20968295202016 @default.
- W2096829520 countsByYear W20968295202017 @default.
- W2096829520 countsByYear W20968295202018 @default.
- W2096829520 countsByYear W20968295202019 @default.
- W2096829520 countsByYear W20968295202020 @default.
- W2096829520 countsByYear W20968295202021 @default.
- W2096829520 countsByYear W20968295202022 @default.
- W2096829520 countsByYear W20968295202023 @default.
- W2096829520 crossrefType "journal-article" @default.
- W2096829520 hasAuthorship W2096829520A5070637193 @default.
- W2096829520 hasAuthorship W2096829520A5080819705 @default.
- W2096829520 hasBestOaLocation W20968295201 @default.
- W2096829520 hasConcept C127413603 @default.
- W2096829520 hasConcept C132943942 @default.
- W2096829520 hasConcept C137580998 @default.
- W2096829520 hasConcept C149207113 @default.
- W2096829520 hasConcept C161542896 @default.
- W2096829520 hasConcept C166957645 @default.
- W2096829520 hasConcept C176783924 @default.
- W2096829520 hasConcept C187320778 @default.
- W2096829520 hasConcept C18903297 @default.
- W2096829520 hasConcept C205649164 @default.
- W2096829520 hasConcept C39432304 @default.
- W2096829520 hasConcept C6557445 @default.
- W2096829520 hasConcept C66465714 @default.
- W2096829520 hasConcept C86803240 @default.
- W2096829520 hasConcept C88463610 @default.
- W2096829520 hasConceptScore W2096829520C127413603 @default.
- W2096829520 hasConceptScore W2096829520C132943942 @default.
- W2096829520 hasConceptScore W2096829520C137580998 @default.
- W2096829520 hasConceptScore W2096829520C149207113 @default.
- W2096829520 hasConceptScore W2096829520C161542896 @default.
- W2096829520 hasConceptScore W2096829520C166957645 @default.
- W2096829520 hasConceptScore W2096829520C176783924 @default.
- W2096829520 hasConceptScore W2096829520C187320778 @default.
- W2096829520 hasConceptScore W2096829520C18903297 @default.
- W2096829520 hasConceptScore W2096829520C205649164 @default.
- W2096829520 hasConceptScore W2096829520C39432304 @default.
- W2096829520 hasConceptScore W2096829520C6557445 @default.
- W2096829520 hasConceptScore W2096829520C66465714 @default.
- W2096829520 hasConceptScore W2096829520C86803240 @default.
- W2096829520 hasConceptScore W2096829520C88463610 @default.
- W2096829520 hasIssue "5" @default.
- W2096829520 hasLocation W20968295201 @default.
- W2096829520 hasLocation W20968295202 @default.
- W2096829520 hasLocation W20968295203 @default.
- W2096829520 hasLocation W20968295204 @default.
- W2096829520 hasLocation W20968295205 @default.
- W2096829520 hasOpenAccess W2096829520 @default.