Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096877980> ?p ?o ?g. }
- W2096877980 endingPage "347" @default.
- W2096877980 startingPage "327" @default.
- W2096877980 abstract "The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955–2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on the phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996–2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature." @default.
- W2096877980 created "2016-06-24" @default.
- W2096877980 creator A5020543899 @default.
- W2096877980 creator A5036582714 @default.
- W2096877980 date "2010-03-01" @default.
- W2096877980 modified "2023-09-29" @default.
- W2096877980 title "Nonlinear ensemble prediction of chaotic daily rainfall" @default.
- W2096877980 cites W1966367971 @default.
- W2096877980 cites W1966735723 @default.
- W2096877980 cites W1978743288 @default.
- W2096877980 cites W1984391316 @default.
- W2096877980 cites W1990700007 @default.
- W2096877980 cites W2000356602 @default.
- W2096877980 cites W2007061731 @default.
- W2096877980 cites W2007723437 @default.
- W2096877980 cites W2010701885 @default.
- W2096877980 cites W2011490939 @default.
- W2096877980 cites W2029401646 @default.
- W2096877980 cites W2031285471 @default.
- W2096877980 cites W2031365860 @default.
- W2096877980 cites W2032293106 @default.
- W2096877980 cites W2034099719 @default.
- W2096877980 cites W2035727581 @default.
- W2096877980 cites W2040259111 @default.
- W2096877980 cites W2040704490 @default.
- W2096877980 cites W2042044691 @default.
- W2096877980 cites W2042805680 @default.
- W2096877980 cites W2047286795 @default.
- W2096877980 cites W2055084071 @default.
- W2096877980 cites W2055832077 @default.
- W2096877980 cites W2058044847 @default.
- W2096877980 cites W2058407646 @default.
- W2096877980 cites W2066366061 @default.
- W2096877980 cites W2067899736 @default.
- W2096877980 cites W2071296833 @default.
- W2096877980 cites W2073630396 @default.
- W2096877980 cites W2084171682 @default.
- W2096877980 cites W2085009317 @default.
- W2096877980 cites W2090172491 @default.
- W2096877980 cites W2094834228 @default.
- W2096877980 cites W2098746383 @default.
- W2096877980 cites W2108454139 @default.
- W2096877980 cites W2124428761 @default.
- W2096877980 cites W2139630772 @default.
- W2096877980 cites W2151850816 @default.
- W2096877980 cites W2152254020 @default.
- W2096877980 cites W3122507959 @default.
- W2096877980 doi "https://doi.org/10.1016/j.advwatres.2010.01.001" @default.
- W2096877980 hasPublicationYear "2010" @default.
- W2096877980 type Work @default.
- W2096877980 sameAs 2096877980 @default.
- W2096877980 citedByCount "84" @default.
- W2096877980 countsByYear W20968779802012 @default.
- W2096877980 countsByYear W20968779802013 @default.
- W2096877980 countsByYear W20968779802014 @default.
- W2096877980 countsByYear W20968779802015 @default.
- W2096877980 countsByYear W20968779802016 @default.
- W2096877980 countsByYear W20968779802017 @default.
- W2096877980 countsByYear W20968779802018 @default.
- W2096877980 countsByYear W20968779802019 @default.
- W2096877980 countsByYear W20968779802020 @default.
- W2096877980 countsByYear W20968779802021 @default.
- W2096877980 countsByYear W20968779802022 @default.
- W2096877980 countsByYear W20968779802023 @default.
- W2096877980 crossrefType "journal-article" @default.
- W2096877980 hasAuthorship W2096877980A5020543899 @default.
- W2096877980 hasAuthorship W2096877980A5036582714 @default.
- W2096877980 hasConcept C105795698 @default.
- W2096877980 hasConcept C110601934 @default.
- W2096877980 hasConcept C121332964 @default.
- W2096877980 hasConcept C121864883 @default.
- W2096877980 hasConcept C133905733 @default.
- W2096877980 hasConcept C134306372 @default.
- W2096877980 hasConcept C138885662 @default.
- W2096877980 hasConcept C142806159 @default.
- W2096877980 hasConcept C143724316 @default.
- W2096877980 hasConcept C151342819 @default.
- W2096877980 hasConcept C151730666 @default.
- W2096877980 hasConcept C154945302 @default.
- W2096877980 hasConcept C158622935 @default.
- W2096877980 hasConcept C191544260 @default.
- W2096877980 hasConcept C197640229 @default.
- W2096877980 hasConcept C202444582 @default.
- W2096877980 hasConcept C207390915 @default.
- W2096877980 hasConcept C26546657 @default.
- W2096877980 hasConcept C2777052490 @default.
- W2096877980 hasConcept C28826006 @default.
- W2096877980 hasConcept C33676613 @default.
- W2096877980 hasConcept C33923547 @default.
- W2096877980 hasConcept C40636538 @default.
- W2096877980 hasConcept C41008148 @default.
- W2096877980 hasConcept C41895202 @default.
- W2096877980 hasConcept C62520636 @default.
- W2096877980 hasConcept C86803240 @default.
- W2096877980 hasConcept C97355855 @default.
- W2096877980 hasConceptScore W2096877980C105795698 @default.
- W2096877980 hasConceptScore W2096877980C110601934 @default.
- W2096877980 hasConceptScore W2096877980C121332964 @default.