Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097108250> ?p ?o ?g. }
- W2097108250 endingPage "2868" @default.
- W2097108250 startingPage "2833" @default.
- W2097108250 abstract "We consider the problem of estimating Shannon's entropy H from discrete data, in cases where the number of possible symbols is unknown or even countably infinite. The process, a generalization of Dirichlet process, provides a tractable prior distribution over the space of countably infinite discrete distributions, and has found major applications in Bayesian non-parametric statistics and machine learning. Here we show that it provides a natural family of priors for Bayesian entropy estimation, due to the fact that moments of the induced posterior distribution over H can be computed analytically. We derive formulas for the posterior mean (Bayes' least squares estimate) and variance under Dirichlet and process priors. Moreover, we show that a fixed Dirichlet or process prior implies a narrow prior distribution over H, meaning the prior strongly determines the entropy estimate in the under-sampled regime. We derive a family of continuous measures for mixing processes to produce an approximately flat prior over H. We show that the resulting Pitman-Yor Mixture (PYM) entropy estimator is consistent for a large class of distributions. Finally, we explore the theoretical properties of the resulting estimator, and show that it performs well both in simulation and in application to real data." @default.
- W2097108250 created "2016-06-24" @default.
- W2097108250 creator A5026150866 @default.
- W2097108250 creator A5047908820 @default.
- W2097108250 creator A5051989657 @default.
- W2097108250 date "2014-01-01" @default.
- W2097108250 modified "2023-09-24" @default.
- W2097108250 title "Bayesian entropy estimation for countable discrete distributions" @default.
- W2097108250 cites W1661915592 @default.
- W2097108250 cites W1800104164 @default.
- W2097108250 cites W190008395 @default.
- W2097108250 cites W1947089506 @default.
- W2097108250 cites W1964152557 @default.
- W2097108250 cites W1985556836 @default.
- W2097108250 cites W1989786687 @default.
- W2097108250 cites W1992536060 @default.
- W2097108250 cites W2000650629 @default.
- W2097108250 cites W2008551287 @default.
- W2097108250 cites W2011342110 @default.
- W2097108250 cites W2024472792 @default.
- W2097108250 cites W2042498709 @default.
- W2097108250 cites W2069429561 @default.
- W2097108250 cites W2072169887 @default.
- W2097108250 cites W2079656678 @default.
- W2097108250 cites W2086521853 @default.
- W2097108250 cites W2087309226 @default.
- W2097108250 cites W2097173970 @default.
- W2097108250 cites W2097580994 @default.
- W2097108250 cites W2097636360 @default.
- W2097108250 cites W2101985079 @default.
- W2097108250 cites W2106012167 @default.
- W2097108250 cites W2109584604 @default.
- W2097108250 cites W2109647515 @default.
- W2097108250 cites W2114771311 @default.
- W2097108250 cites W2118036030 @default.
- W2097108250 cites W2134876548 @default.
- W2097108250 cites W2135191607 @default.
- W2097108250 cites W2135765767 @default.
- W2097108250 cites W2138892454 @default.
- W2097108250 cites W2141753389 @default.
- W2097108250 cites W2150507172 @default.
- W2097108250 cites W2151297684 @default.
- W2097108250 cites W2151387592 @default.
- W2097108250 cites W2154099718 @default.
- W2097108250 cites W2158674848 @default.
- W2097108250 cites W2159399018 @default.
- W2097108250 cites W2163166770 @default.
- W2097108250 cites W2510474575 @default.
- W2097108250 cites W2740656747 @default.
- W2097108250 cites W2903830437 @default.
- W2097108250 cites W2950627632 @default.
- W2097108250 cites W2736230390 @default.
- W2097108250 doi "https://doi.org/10.5555/2627435.2697056" @default.
- W2097108250 hasPublicationYear "2014" @default.
- W2097108250 type Work @default.
- W2097108250 sameAs 2097108250 @default.
- W2097108250 citedByCount "25" @default.
- W2097108250 countsByYear W20971082502013 @default.
- W2097108250 countsByYear W20971082502015 @default.
- W2097108250 countsByYear W20971082502016 @default.
- W2097108250 countsByYear W20971082502017 @default.
- W2097108250 countsByYear W20971082502018 @default.
- W2097108250 countsByYear W20971082502019 @default.
- W2097108250 countsByYear W20971082502020 @default.
- W2097108250 countsByYear W20971082502021 @default.
- W2097108250 countsByYear W20971082502023 @default.
- W2097108250 crossrefType "journal-article" @default.
- W2097108250 hasAuthorship W2097108250A5026150866 @default.
- W2097108250 hasAuthorship W2097108250A5047908820 @default.
- W2097108250 hasAuthorship W2097108250A5051989657 @default.
- W2097108250 hasConcept C105795698 @default.
- W2097108250 hasConcept C106301342 @default.
- W2097108250 hasConcept C107673813 @default.
- W2097108250 hasConcept C121332964 @default.
- W2097108250 hasConcept C134306372 @default.
- W2097108250 hasConcept C169214877 @default.
- W2097108250 hasConcept C177769412 @default.
- W2097108250 hasConcept C182310444 @default.
- W2097108250 hasConcept C185429906 @default.
- W2097108250 hasConcept C18653775 @default.
- W2097108250 hasConcept C2781280628 @default.
- W2097108250 hasConcept C28826006 @default.
- W2097108250 hasConcept C33923547 @default.
- W2097108250 hasConcept C52290693 @default.
- W2097108250 hasConcept C62520636 @default.
- W2097108250 hasConcept C96234433 @default.
- W2097108250 hasConcept C9679016 @default.
- W2097108250 hasConceptScore W2097108250C105795698 @default.
- W2097108250 hasConceptScore W2097108250C106301342 @default.
- W2097108250 hasConceptScore W2097108250C107673813 @default.
- W2097108250 hasConceptScore W2097108250C121332964 @default.
- W2097108250 hasConceptScore W2097108250C134306372 @default.
- W2097108250 hasConceptScore W2097108250C169214877 @default.
- W2097108250 hasConceptScore W2097108250C177769412 @default.
- W2097108250 hasConceptScore W2097108250C182310444 @default.
- W2097108250 hasConceptScore W2097108250C185429906 @default.
- W2097108250 hasConceptScore W2097108250C18653775 @default.
- W2097108250 hasConceptScore W2097108250C2781280628 @default.