Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097171469> ?p ?o ?g. }
- W2097171469 endingPage "126" @default.
- W2097171469 startingPage "117" @default.
- W2097171469 abstract "In this paper, we proposed the multiclass support vector machine (SVM) with the error-correcting output codes for the multiclass electroencephalogram (EEG) signals classification problem. The probabilistic neural network (PNN) and multilayer perceptron neural network were also tested and benchmarked for their performance on the classification of the EEG signals. Decision making was performed in two stages: feature extraction by computing the wavelet coefficients and the Lyapunov exponents and classification using the classifiers trained on the extracted features. The purpose was to determine an optimum classification scheme for this problem and also to infer clues about the extracted features. Our research demonstrated that the wavelet coefficients and the Lyapunov exponents are the features which well represent the EEG signals and the multiclass SVM and PNN trained on these features achieved high classification accuracies." @default.
- W2097171469 created "2016-06-24" @default.
- W2097171469 creator A5042153931 @default.
- W2097171469 creator A5045714946 @default.
- W2097171469 date "2007-03-01" @default.
- W2097171469 modified "2023-10-17" @default.
- W2097171469 title "Multiclass Support Vector Machines for EEG-Signals Classification" @default.
- W2097171469 cites W1676820704 @default.
- W2097171469 cites W1964168965 @default.
- W2097171469 cites W1965754674 @default.
- W2097171469 cites W1975758854 @default.
- W2097171469 cites W1976307554 @default.
- W2097171469 cites W1996021349 @default.
- W2097171469 cites W2000548777 @default.
- W2097171469 cites W2001265478 @default.
- W2097171469 cites W2006892172 @default.
- W2097171469 cites W2029666105 @default.
- W2097171469 cites W2038770448 @default.
- W2097171469 cites W2053744708 @default.
- W2097171469 cites W2058722442 @default.
- W2097171469 cites W2076516577 @default.
- W2097171469 cites W2095473347 @default.
- W2097171469 cites W2098844365 @default.
- W2097171469 cites W2117858347 @default.
- W2097171469 cites W2119234283 @default.
- W2097171469 cites W2146203966 @default.
- W2097171469 cites W2155482699 @default.
- W2097171469 cites W2156909104 @default.
- W2097171469 cites W2169292331 @default.
- W2097171469 cites W2172128855 @default.
- W2097171469 cites W4239510810 @default.
- W2097171469 doi "https://doi.org/10.1109/titb.2006.879600" @default.
- W2097171469 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17390982" @default.
- W2097171469 hasPublicationYear "2007" @default.
- W2097171469 type Work @default.
- W2097171469 sameAs 2097171469 @default.
- W2097171469 citedByCount "323" @default.
- W2097171469 countsByYear W20971714692012 @default.
- W2097171469 countsByYear W20971714692013 @default.
- W2097171469 countsByYear W20971714692014 @default.
- W2097171469 countsByYear W20971714692015 @default.
- W2097171469 countsByYear W20971714692016 @default.
- W2097171469 countsByYear W20971714692017 @default.
- W2097171469 countsByYear W20971714692018 @default.
- W2097171469 countsByYear W20971714692019 @default.
- W2097171469 countsByYear W20971714692020 @default.
- W2097171469 countsByYear W20971714692021 @default.
- W2097171469 countsByYear W20971714692022 @default.
- W2097171469 countsByYear W20971714692023 @default.
- W2097171469 crossrefType "journal-article" @default.
- W2097171469 hasAuthorship W2097171469A5042153931 @default.
- W2097171469 hasAuthorship W2097171469A5045714946 @default.
- W2097171469 hasConcept C118552586 @default.
- W2097171469 hasConcept C119857082 @default.
- W2097171469 hasConcept C12267149 @default.
- W2097171469 hasConcept C123860398 @default.
- W2097171469 hasConcept C134342201 @default.
- W2097171469 hasConcept C138885662 @default.
- W2097171469 hasConcept C153180895 @default.
- W2097171469 hasConcept C154945302 @default.
- W2097171469 hasConcept C15744967 @default.
- W2097171469 hasConcept C175202392 @default.
- W2097171469 hasConcept C179717631 @default.
- W2097171469 hasConcept C2776401178 @default.
- W2097171469 hasConcept C41008148 @default.
- W2097171469 hasConcept C41895202 @default.
- W2097171469 hasConcept C47432892 @default.
- W2097171469 hasConcept C50644808 @default.
- W2097171469 hasConcept C522805319 @default.
- W2097171469 hasConcept C52622490 @default.
- W2097171469 hasConcept C60908668 @default.
- W2097171469 hasConcept C83665646 @default.
- W2097171469 hasConceptScore W2097171469C118552586 @default.
- W2097171469 hasConceptScore W2097171469C119857082 @default.
- W2097171469 hasConceptScore W2097171469C12267149 @default.
- W2097171469 hasConceptScore W2097171469C123860398 @default.
- W2097171469 hasConceptScore W2097171469C134342201 @default.
- W2097171469 hasConceptScore W2097171469C138885662 @default.
- W2097171469 hasConceptScore W2097171469C153180895 @default.
- W2097171469 hasConceptScore W2097171469C154945302 @default.
- W2097171469 hasConceptScore W2097171469C15744967 @default.
- W2097171469 hasConceptScore W2097171469C175202392 @default.
- W2097171469 hasConceptScore W2097171469C179717631 @default.
- W2097171469 hasConceptScore W2097171469C2776401178 @default.
- W2097171469 hasConceptScore W2097171469C41008148 @default.
- W2097171469 hasConceptScore W2097171469C41895202 @default.
- W2097171469 hasConceptScore W2097171469C47432892 @default.
- W2097171469 hasConceptScore W2097171469C50644808 @default.
- W2097171469 hasConceptScore W2097171469C522805319 @default.
- W2097171469 hasConceptScore W2097171469C52622490 @default.
- W2097171469 hasConceptScore W2097171469C60908668 @default.
- W2097171469 hasConceptScore W2097171469C83665646 @default.
- W2097171469 hasIssue "2" @default.
- W2097171469 hasLocation W20971714691 @default.
- W2097171469 hasLocation W20971714692 @default.
- W2097171469 hasOpenAccess W2097171469 @default.
- W2097171469 hasPrimaryLocation W20971714691 @default.
- W2097171469 hasRelatedWork W1902766772 @default.