Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097188505> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2097188505 abstract "The selection and learning of kernel functions is a very important but rarely studied problem in the field of support vector learning. However, the kernel function of a support vector machine has great influence on its performance. The kernel function projects the dataset from the original data space into the feature space, and therefore the problems which can not be done in low dimensions could be done in a higher dimension through the transform of the kernel function. In this paper, we introduce the gradient descent method into the learning of kernel functions. Using the gradient descent method, we can conduct learning rules of the parameters which indicate the shape and distribution of the kernel functions. Therefore, we can obtain better kernel functions by training of their parameters with respect to the risk minimization principle. The experimental results have shown that our approach can derive better kernel functions and thus has better generalization ability than other methods." @default.
- W2097188505 created "2016-06-24" @default.
- W2097188505 creator A5011318649 @default.
- W2097188505 creator A5018214840 @default.
- W2097188505 creator A5024403730 @default.
- W2097188505 date "2006-01-01" @default.
- W2097188505 modified "2023-09-26" @default.
- W2097188505 title "Learning of Kernel Functions in Support Vector Machines" @default.
- W2097188505 cites W1484160485 @default.
- W2097188505 cites W1510073064 @default.
- W2097188505 cites W1530699444 @default.
- W2097188505 cites W1563088657 @default.
- W2097188505 cites W1964357740 @default.
- W2097188505 cites W2115076892 @default.
- W2097188505 cites W2134925510 @default.
- W2097188505 cites W2139212933 @default.
- W2097188505 cites W2145235961 @default.
- W2097188505 cites W2146181121 @default.
- W2097188505 cites W2156909104 @default.
- W2097188505 cites W5594912 @default.
- W2097188505 doi "https://doi.org/10.1109/ijcnn.2006.246820" @default.
- W2097188505 hasPublicationYear "2006" @default.
- W2097188505 type Work @default.
- W2097188505 sameAs 2097188505 @default.
- W2097188505 citedByCount "5" @default.
- W2097188505 crossrefType "proceedings-article" @default.
- W2097188505 hasAuthorship W2097188505A5011318649 @default.
- W2097188505 hasAuthorship W2097188505A5018214840 @default.
- W2097188505 hasAuthorship W2097188505A5024403730 @default.
- W2097188505 hasConcept C118615104 @default.
- W2097188505 hasConcept C119857082 @default.
- W2097188505 hasConcept C122280245 @default.
- W2097188505 hasConcept C12267149 @default.
- W2097188505 hasConcept C134306372 @default.
- W2097188505 hasConcept C134517425 @default.
- W2097188505 hasConcept C140417398 @default.
- W2097188505 hasConcept C153180895 @default.
- W2097188505 hasConcept C153258448 @default.
- W2097188505 hasConcept C154945302 @default.
- W2097188505 hasConcept C160446489 @default.
- W2097188505 hasConcept C177148314 @default.
- W2097188505 hasConcept C182335926 @default.
- W2097188505 hasConcept C195699287 @default.
- W2097188505 hasConcept C202444582 @default.
- W2097188505 hasConcept C2776879701 @default.
- W2097188505 hasConcept C33676613 @default.
- W2097188505 hasConcept C33923547 @default.
- W2097188505 hasConcept C41008148 @default.
- W2097188505 hasConcept C50644808 @default.
- W2097188505 hasConcept C55851704 @default.
- W2097188505 hasConcept C74193536 @default.
- W2097188505 hasConcept C75866337 @default.
- W2097188505 hasConcept C83665646 @default.
- W2097188505 hasConceptScore W2097188505C118615104 @default.
- W2097188505 hasConceptScore W2097188505C119857082 @default.
- W2097188505 hasConceptScore W2097188505C122280245 @default.
- W2097188505 hasConceptScore W2097188505C12267149 @default.
- W2097188505 hasConceptScore W2097188505C134306372 @default.
- W2097188505 hasConceptScore W2097188505C134517425 @default.
- W2097188505 hasConceptScore W2097188505C140417398 @default.
- W2097188505 hasConceptScore W2097188505C153180895 @default.
- W2097188505 hasConceptScore W2097188505C153258448 @default.
- W2097188505 hasConceptScore W2097188505C154945302 @default.
- W2097188505 hasConceptScore W2097188505C160446489 @default.
- W2097188505 hasConceptScore W2097188505C177148314 @default.
- W2097188505 hasConceptScore W2097188505C182335926 @default.
- W2097188505 hasConceptScore W2097188505C195699287 @default.
- W2097188505 hasConceptScore W2097188505C202444582 @default.
- W2097188505 hasConceptScore W2097188505C2776879701 @default.
- W2097188505 hasConceptScore W2097188505C33676613 @default.
- W2097188505 hasConceptScore W2097188505C33923547 @default.
- W2097188505 hasConceptScore W2097188505C41008148 @default.
- W2097188505 hasConceptScore W2097188505C50644808 @default.
- W2097188505 hasConceptScore W2097188505C55851704 @default.
- W2097188505 hasConceptScore W2097188505C74193536 @default.
- W2097188505 hasConceptScore W2097188505C75866337 @default.
- W2097188505 hasConceptScore W2097188505C83665646 @default.
- W2097188505 hasLocation W20971885051 @default.
- W2097188505 hasOpenAccess W2097188505 @default.
- W2097188505 hasPrimaryLocation W20971885051 @default.
- W2097188505 hasRelatedWork W1558903433 @default.
- W2097188505 hasRelatedWork W1969447452 @default.
- W2097188505 hasRelatedWork W1975708617 @default.
- W2097188505 hasRelatedWork W1976730005 @default.
- W2097188505 hasRelatedWork W1983263273 @default.
- W2097188505 hasRelatedWork W2097188505 @default.
- W2097188505 hasRelatedWork W2371064519 @default.
- W2097188505 hasRelatedWork W2898882859 @default.
- W2097188505 hasRelatedWork W3013206934 @default.
- W2097188505 hasRelatedWork W4291669689 @default.
- W2097188505 isParatext "false" @default.
- W2097188505 isRetracted "false" @default.
- W2097188505 magId "2097188505" @default.
- W2097188505 workType "article" @default.