Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097188985> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2097188985 endingPage "36" @default.
- W2097188985 startingPage "28" @default.
- W2097188985 abstract "Abstract Knowledge of the area under different crops is important to the U.S. Department of Agriculture. Sample surveys have been designed to estimate crop areas for large regions, such as crop-reporting districts, individual states, and the United States as a whole. Predicting crop areas for small areas such as counties has generally not been attempted, due to a lack of available data from farm surveys for these areas. The use of satellite data in association with farm-level survey observations has been the subject of considerable research in recent years. This article considers (a) data for 12 Iowa counties, obtained from the 1978 June Enumerative Survey of the U.S. Department of Agriculture and (b) data obtained from land observatory satellites (LANDSAT) during the 1978 growing season. Emphasis is given to predicting the area under corn and soybeans in these counties. A linear regression model is specified for the relationship between the reported hectares of corn and soybeans within sample segments in the June Enumerative Survey and the corresponding satellite determination for areas under corn and soybeans. A nested-error model defines a correlation structure among reported crop hectares within the counties. Given this model, the mean hectares of the crop per segment in a county is defined as the conditional mean of reported hectares, given the satellite determinations and the realized (random) county effect. The mean hectares of the crop per segment is the sum of a fixed component, involving unknown parameters to be estimated and a random component to be predicted. Variance-component estimators in the nested-error model are defined, and the generalized least-squares estimators of the parameters of the linear model are obtained. Predictors of the mean crop hectares per segment are defined in terms of these estimators. An estimator of the variance of the error in the predictor is constructed, including terms arising from the estimation of the parameters of the model. Predictions of mean hectares of corn and soybeans per segment for the 12 Iowa counties are presented. Standard errors of the predictions are compared with those of competing predictors. The suggested predictor for the county mean crop area per segment has a standard error that is considerably less than that of the traditional survey regression predictor." @default.
- W2097188985 created "2016-06-24" @default.
- W2097188985 creator A5053114801 @default.
- W2097188985 creator A5079221224 @default.
- W2097188985 creator A5087981822 @default.
- W2097188985 date "1988-03-01" @default.
- W2097188985 modified "2023-10-18" @default.
- W2097188985 title "An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data" @default.
- W2097188985 cites W1982585616 @default.
- W2097188985 cites W2025071037 @default.
- W2097188985 cites W2120693817 @default.
- W2097188985 cites W4232289448 @default.
- W2097188985 cites W4234054795 @default.
- W2097188985 cites W4238658453 @default.
- W2097188985 cites W4240245540 @default.
- W2097188985 cites W4244242120 @default.
- W2097188985 cites W4245235635 @default.
- W2097188985 cites W4245948224 @default.
- W2097188985 cites W4249835964 @default.
- W2097188985 cites W4293258550 @default.
- W2097188985 cites W4375907329 @default.
- W2097188985 cites W95858707 @default.
- W2097188985 doi "https://doi.org/10.1080/01621459.1988.10478561" @default.
- W2097188985 hasPublicationYear "1988" @default.
- W2097188985 type Work @default.
- W2097188985 sameAs 2097188985 @default.
- W2097188985 citedByCount "617" @default.
- W2097188985 countsByYear W20971889852012 @default.
- W2097188985 countsByYear W20971889852013 @default.
- W2097188985 countsByYear W20971889852014 @default.
- W2097188985 countsByYear W20971889852015 @default.
- W2097188985 countsByYear W20971889852016 @default.
- W2097188985 countsByYear W20971889852017 @default.
- W2097188985 countsByYear W20971889852018 @default.
- W2097188985 countsByYear W20971889852019 @default.
- W2097188985 countsByYear W20971889852020 @default.
- W2097188985 countsByYear W20971889852021 @default.
- W2097188985 countsByYear W20971889852022 @default.
- W2097188985 countsByYear W20971889852023 @default.
- W2097188985 crossrefType "journal-article" @default.
- W2097188985 hasAuthorship W2097188985A5053114801 @default.
- W2097188985 hasAuthorship W2097188985A5079221224 @default.
- W2097188985 hasAuthorship W2097188985A5087981822 @default.
- W2097188985 hasConcept C105795698 @default.
- W2097188985 hasConcept C118518473 @default.
- W2097188985 hasConcept C127413603 @default.
- W2097188985 hasConcept C137580998 @default.
- W2097188985 hasConcept C137660486 @default.
- W2097188985 hasConcept C146978453 @default.
- W2097188985 hasConcept C166957645 @default.
- W2097188985 hasConcept C19269812 @default.
- W2097188985 hasConcept C198477413 @default.
- W2097188985 hasConcept C202050865 @default.
- W2097188985 hasConcept C205649164 @default.
- W2097188985 hasConcept C33923547 @default.
- W2097188985 hasConcept C39432304 @default.
- W2097188985 hasConcept C6557445 @default.
- W2097188985 hasConcept C86803240 @default.
- W2097188985 hasConcept C97137747 @default.
- W2097188985 hasConceptScore W2097188985C105795698 @default.
- W2097188985 hasConceptScore W2097188985C118518473 @default.
- W2097188985 hasConceptScore W2097188985C127413603 @default.
- W2097188985 hasConceptScore W2097188985C137580998 @default.
- W2097188985 hasConceptScore W2097188985C137660486 @default.
- W2097188985 hasConceptScore W2097188985C146978453 @default.
- W2097188985 hasConceptScore W2097188985C166957645 @default.
- W2097188985 hasConceptScore W2097188985C19269812 @default.
- W2097188985 hasConceptScore W2097188985C198477413 @default.
- W2097188985 hasConceptScore W2097188985C202050865 @default.
- W2097188985 hasConceptScore W2097188985C205649164 @default.
- W2097188985 hasConceptScore W2097188985C33923547 @default.
- W2097188985 hasConceptScore W2097188985C39432304 @default.
- W2097188985 hasConceptScore W2097188985C6557445 @default.
- W2097188985 hasConceptScore W2097188985C86803240 @default.
- W2097188985 hasConceptScore W2097188985C97137747 @default.
- W2097188985 hasIssue "401" @default.
- W2097188985 hasLocation W20971889851 @default.
- W2097188985 hasOpenAccess W2097188985 @default.
- W2097188985 hasPrimaryLocation W20971889851 @default.
- W2097188985 hasRelatedWork W1600105961 @default.
- W2097188985 hasRelatedWork W2129150461 @default.
- W2097188985 hasRelatedWork W2262023932 @default.
- W2097188985 hasRelatedWork W2264030233 @default.
- W2097188985 hasRelatedWork W2552050053 @default.
- W2097188985 hasRelatedWork W2769230790 @default.
- W2097188985 hasRelatedWork W2899084033 @default.
- W2097188985 hasRelatedWork W2901579060 @default.
- W2097188985 hasRelatedWork W3169400782 @default.
- W2097188985 hasRelatedWork W2986321859 @default.
- W2097188985 hasVolume "83" @default.
- W2097188985 isParatext "false" @default.
- W2097188985 isRetracted "false" @default.
- W2097188985 magId "2097188985" @default.
- W2097188985 workType "article" @default.