Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097260197> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2097260197 abstract "Accurate diagnosis and classification is the key issue for the optimal treatment of cancer patients. Several studies demonstrate that cancer classification can be estimated with high accuracy, sensitivity and specificity from microarray-based gene expression profiling using artificial neural networks. In this paper, a comprehensive study was undertaken to investigate the capability of the probabilistic neural networks (PNN) associated with a feature selection method, a so-called signal-to-noise statistic, in the application of cancer classification. The signal-to-noise statistic, which represents the correlation with the class distinction, is used to select the marker genes and trim the dimension of data samples for the PNN. The experimental results show that the association of the probabilistic neural network with the signal-to-noise statistic can achieve superior classification results for two types of acute leukemias and five categories of embryonal tumors of central nervous system with satisfactory computation speed. Furthermore, the signal-to-noise statistic analysis provides candidate genes for future study in understanding the disease process and the identification of potential targets for therapeutic intervention." @default.
- W2097260197 created "2016-06-24" @default.
- W2097260197 creator A5080364763 @default.
- W2097260197 creator A5091460546 @default.
- W2097260197 date "2004-03-02" @default.
- W2097260197 modified "2023-10-18" @default.
- W2097260197 title "A comparative study of feature selection methods for probabilistic neural networks in cancer classification" @default.
- W2097260197 cites W2074615853 @default.
- W2097260197 cites W2088851040 @default.
- W2097260197 cites W2098792464 @default.
- W2097260197 cites W2104454186 @default.
- W2097260197 cites W2107956883 @default.
- W2097260197 cites W2108864666 @default.
- W2097260197 cites W2109363337 @default.
- W2097260197 cites W2109676405 @default.
- W2097260197 cites W2114238869 @default.
- W2097260197 cites W2122599407 @default.
- W2097260197 cites W2128225708 @default.
- W2097260197 cites W2133184769 @default.
- W2097260197 cites W2169554323 @default.
- W2097260197 cites W4230625347 @default.
- W2097260197 doi "https://doi.org/10.1109/tai.2003.1250224" @default.
- W2097260197 hasPublicationYear "2004" @default.
- W2097260197 type Work @default.
- W2097260197 sameAs 2097260197 @default.
- W2097260197 citedByCount "25" @default.
- W2097260197 countsByYear W20972601972012 @default.
- W2097260197 countsByYear W20972601972013 @default.
- W2097260197 countsByYear W20972601972014 @default.
- W2097260197 countsByYear W20972601972015 @default.
- W2097260197 countsByYear W20972601972020 @default.
- W2097260197 countsByYear W20972601972022 @default.
- W2097260197 countsByYear W20972601972023 @default.
- W2097260197 crossrefType "proceedings-article" @default.
- W2097260197 hasAuthorship W2097260197A5080364763 @default.
- W2097260197 hasAuthorship W2097260197A5091460546 @default.
- W2097260197 hasConcept C105795698 @default.
- W2097260197 hasConcept C115961682 @default.
- W2097260197 hasConcept C119857082 @default.
- W2097260197 hasConcept C124101348 @default.
- W2097260197 hasConcept C134342201 @default.
- W2097260197 hasConcept C148483581 @default.
- W2097260197 hasConcept C153180895 @default.
- W2097260197 hasConcept C154945302 @default.
- W2097260197 hasConcept C175202392 @default.
- W2097260197 hasConcept C33923547 @default.
- W2097260197 hasConcept C41008148 @default.
- W2097260197 hasConcept C49937458 @default.
- W2097260197 hasConcept C50644808 @default.
- W2097260197 hasConcept C89128539 @default.
- W2097260197 hasConcept C99498987 @default.
- W2097260197 hasConceptScore W2097260197C105795698 @default.
- W2097260197 hasConceptScore W2097260197C115961682 @default.
- W2097260197 hasConceptScore W2097260197C119857082 @default.
- W2097260197 hasConceptScore W2097260197C124101348 @default.
- W2097260197 hasConceptScore W2097260197C134342201 @default.
- W2097260197 hasConceptScore W2097260197C148483581 @default.
- W2097260197 hasConceptScore W2097260197C153180895 @default.
- W2097260197 hasConceptScore W2097260197C154945302 @default.
- W2097260197 hasConceptScore W2097260197C175202392 @default.
- W2097260197 hasConceptScore W2097260197C33923547 @default.
- W2097260197 hasConceptScore W2097260197C41008148 @default.
- W2097260197 hasConceptScore W2097260197C49937458 @default.
- W2097260197 hasConceptScore W2097260197C50644808 @default.
- W2097260197 hasConceptScore W2097260197C89128539 @default.
- W2097260197 hasConceptScore W2097260197C99498987 @default.
- W2097260197 hasLocation W20972601971 @default.
- W2097260197 hasOpenAccess W2097260197 @default.
- W2097260197 hasPrimaryLocation W20972601971 @default.
- W2097260197 hasRelatedWork W1975643538 @default.
- W2097260197 hasRelatedWork W2048220287 @default.
- W2097260197 hasRelatedWork W2067837718 @default.
- W2097260197 hasRelatedWork W2236741694 @default.
- W2097260197 hasRelatedWork W2355754418 @default.
- W2097260197 hasRelatedWork W2355766745 @default.
- W2097260197 hasRelatedWork W2361455248 @default.
- W2097260197 hasRelatedWork W2381770184 @default.
- W2097260197 hasRelatedWork W3210877509 @default.
- W2097260197 hasRelatedWork W4225360065 @default.
- W2097260197 isParatext "false" @default.
- W2097260197 isRetracted "false" @default.
- W2097260197 magId "2097260197" @default.
- W2097260197 workType "article" @default.