Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097272645> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2097272645 endingPage "187" @default.
- W2097272645 startingPage "177" @default.
- W2097272645 abstract "In recent years, neural networks have been used for a wide variety of applications where statistical methods are traditionally employed. Neural nets offer the opportunity to create a model by using technology similar to the learning patterns of the human brain. The structure of artificial neural networks (ANN) is based on the human brain's biological neural processes. Artificial neural networks provide a new approach to the problem of parameter estimation of nonlinear econometric models. This paper presents a comparison between neural networks and econometric approaches for estimation of parameters of an econometric model of grain yield. The aim of this study is to show that neural nets are a convenient econometric tool. The parameters were estimated on the basis of alternative variants of models. The analysis shows that artificial neural network models may be used for parameter estimation of the econometric models." @default.
- W2097272645 created "2016-06-24" @default.
- W2097272645 creator A5080140092 @default.
- W2097272645 creator A5085040716 @default.
- W2097272645 creator A5090617187 @default.
- W2097272645 date "2005-01-01" @default.
- W2097272645 modified "2023-09-26" @default.
- W2097272645 title "Artificial neural network as an alternative to multiple regression analysis for estimating the parameters of econometric models" @default.
- W2097272645 cites W1596290048 @default.
- W2097272645 cites W1972161395 @default.
- W2097272645 cites W1981980215 @default.
- W2097272645 cites W1993498260 @default.
- W2097272645 cites W2027628650 @default.
- W2097272645 cites W2060806893 @default.
- W2097272645 cites W2067069641 @default.
- W2097272645 cites W2116905012 @default.
- W2097272645 cites W3124990279 @default.
- W2097272645 hasPublicationYear "2005" @default.
- W2097272645 type Work @default.
- W2097272645 sameAs 2097272645 @default.
- W2097272645 citedByCount "3" @default.
- W2097272645 countsByYear W20972726452012 @default.
- W2097272645 countsByYear W20972726452014 @default.
- W2097272645 crossrefType "journal-article" @default.
- W2097272645 hasAuthorship W2097272645A5080140092 @default.
- W2097272645 hasAuthorship W2097272645A5085040716 @default.
- W2097272645 hasAuthorship W2097272645A5090617187 @default.
- W2097272645 hasConcept C119857082 @default.
- W2097272645 hasConcept C149782125 @default.
- W2097272645 hasConcept C154945302 @default.
- W2097272645 hasConcept C162324750 @default.
- W2097272645 hasConcept C180075932 @default.
- W2097272645 hasConcept C187736073 @default.
- W2097272645 hasConcept C33923547 @default.
- W2097272645 hasConcept C41008148 @default.
- W2097272645 hasConcept C50644808 @default.
- W2097272645 hasConcept C96250715 @default.
- W2097272645 hasConceptScore W2097272645C119857082 @default.
- W2097272645 hasConceptScore W2097272645C149782125 @default.
- W2097272645 hasConceptScore W2097272645C154945302 @default.
- W2097272645 hasConceptScore W2097272645C162324750 @default.
- W2097272645 hasConceptScore W2097272645C180075932 @default.
- W2097272645 hasConceptScore W2097272645C187736073 @default.
- W2097272645 hasConceptScore W2097272645C33923547 @default.
- W2097272645 hasConceptScore W2097272645C41008148 @default.
- W2097272645 hasConceptScore W2097272645C50644808 @default.
- W2097272645 hasConceptScore W2097272645C96250715 @default.
- W2097272645 hasIssue "2" @default.
- W2097272645 hasLocation W20972726451 @default.
- W2097272645 hasOpenAccess W2097272645 @default.
- W2097272645 hasPrimaryLocation W20972726451 @default.
- W2097272645 hasRelatedWork W1857742875 @default.
- W2097272645 hasRelatedWork W2040387513 @default.
- W2097272645 hasRelatedWork W2090961061 @default.
- W2097272645 hasRelatedWork W2095898861 @default.
- W2097272645 hasRelatedWork W2172218062 @default.
- W2097272645 hasRelatedWork W2495427842 @default.
- W2097272645 hasRelatedWork W2533585993 @default.
- W2097272645 hasRelatedWork W2907227398 @default.
- W2097272645 hasRelatedWork W3031510551 @default.
- W2097272645 hasRelatedWork W3042918109 @default.
- W2097272645 hasRelatedWork W3043093418 @default.
- W2097272645 hasRelatedWork W3066712063 @default.
- W2097272645 hasRelatedWork W3127046748 @default.
- W2097272645 hasRelatedWork W3139907213 @default.
- W2097272645 hasRelatedWork W3146411230 @default.
- W2097272645 hasRelatedWork W314652056 @default.
- W2097272645 hasRelatedWork W3151282838 @default.
- W2097272645 hasRelatedWork W3158666754 @default.
- W2097272645 hasRelatedWork W3197218733 @default.
- W2097272645 hasRelatedWork W3127060194 @default.
- W2097272645 hasVolume "3" @default.
- W2097272645 isParatext "false" @default.
- W2097272645 isRetracted "false" @default.
- W2097272645 magId "2097272645" @default.
- W2097272645 workType "article" @default.