Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097339009> ?p ?o ?g. }
- W2097339009 endingPage "734" @default.
- W2097339009 startingPage "721" @default.
- W2097339009 abstract "In the current vast image segmentation literature, there seems to be considerable redundancy among algorithms, while there is a serious lack of methods that would allow their theoretical comparison to establish their similarity, equivalence, or distinctness. In this paper, we make an attempt to fill this gap. To accomplish this goal, we argue that: (1) every digital segmentation algorithm [Formula: see text] should have a well defined continuous counterpart [Formula: see text], referred to as its model, which constitutes an asymptotic of [Formula: see text] when image resolution goes to infinity; (2) the equality of two such models [Formula: see text] and [Formula: see text] establishes a theoretical (asymptotic) equivalence of their digital counterparts [Formula: see text] and [Formula: see text]. Such a comparison is of full theoretical value only when, for each involved algorithm [Formula: see text], its model [Formula: see text] is proved to be an asymptotic of [Formula: see text]. So far, such proofs do not appear anywhere in the literature, even in the case of algorithms introduced as digitizations of continuous models, like level set segmentation algorithms.The main goal of this article is to explore a line of investigation for formally pairing the digital segmentation algorithms with their asymptotic models, justifying such relations with mathematical proofs, and using the results to compare the segmentation algorithms in this general theoretical framework. As a first step towards this general goal, we prove here that the gradient based thresholding model [Formula: see text] is the asymptotic for the fuzzy connectedness Udupa and Samarasekera segmentation algorithm used with gradient based affinity [Formula: see text]. We also argue that, in a sense, [Formula: see text] is the asymptotic for the original front propagation level set algorithm of Malladi, Sethian, and Vemuri, thus establishing a theoretical equivalence between these two specific algorithms. Experimental evidence of this last equivalence is also provided." @default.
- W2097339009 created "2016-06-24" @default.
- W2097339009 creator A5010025930 @default.
- W2097339009 creator A5065713856 @default.
- W2097339009 date "2011-06-01" @default.
- W2097339009 modified "2023-10-14" @default.
- W2097339009 title "A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frameworks" @default.
- W2097339009 cites W1788024244 @default.
- W2097339009 cites W1968974811 @default.
- W2097339009 cites W1992323613 @default.
- W2097339009 cites W1997709480 @default.
- W2097339009 cites W200263598 @default.
- W2097339009 cites W2010840867 @default.
- W2097339009 cites W2015291970 @default.
- W2097339009 cites W2016777897 @default.
- W2097339009 cites W2038952578 @default.
- W2097339009 cites W2066406368 @default.
- W2097339009 cites W2068934234 @default.
- W2097339009 cites W2084002682 @default.
- W2097339009 cites W2099068298 @default.
- W2097339009 cites W2099290282 @default.
- W2097339009 cites W2099801199 @default.
- W2097339009 cites W2103148294 @default.
- W2097339009 cites W2104095591 @default.
- W2097339009 cites W2105365768 @default.
- W2097339009 cites W2106780881 @default.
- W2097339009 cites W2113622874 @default.
- W2097339009 cites W2114487471 @default.
- W2097339009 cites W2115284428 @default.
- W2097339009 cites W2116040950 @default.
- W2097339009 cites W2119300483 @default.
- W2097339009 cites W2124260943 @default.
- W2097339009 cites W2128819429 @default.
- W2097339009 cites W2143516773 @default.
- W2097339009 cites W2146532890 @default.
- W2097339009 cites W2147963686 @default.
- W2097339009 cites W2149184914 @default.
- W2097339009 cites W2152646103 @default.
- W2097339009 cites W2152826865 @default.
- W2097339009 cites W2155280009 @default.
- W2097339009 cites W2165734775 @default.
- W2097339009 cites W2171061062 @default.
- W2097339009 cites W2208153982 @default.
- W2097339009 cites W2292619276 @default.
- W2097339009 cites W2749408143 @default.
- W2097339009 doi "https://doi.org/10.1016/j.cviu.2011.01.003" @default.
- W2097339009 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3062972" @default.
- W2097339009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21442014" @default.
- W2097339009 hasPublicationYear "2011" @default.
- W2097339009 type Work @default.
- W2097339009 sameAs 2097339009 @default.
- W2097339009 citedByCount "20" @default.
- W2097339009 countsByYear W20973390092012 @default.
- W2097339009 countsByYear W20973390092013 @default.
- W2097339009 countsByYear W20973390092015 @default.
- W2097339009 countsByYear W20973390092019 @default.
- W2097339009 countsByYear W20973390092020 @default.
- W2097339009 countsByYear W20973390092021 @default.
- W2097339009 countsByYear W20973390092022 @default.
- W2097339009 crossrefType "journal-article" @default.
- W2097339009 hasAuthorship W2097339009A5010025930 @default.
- W2097339009 hasAuthorship W2097339009A5065713856 @default.
- W2097339009 hasBestOaLocation W20973390092 @default.
- W2097339009 hasConcept C108710211 @default.
- W2097339009 hasConcept C11413529 @default.
- W2097339009 hasConcept C115961682 @default.
- W2097339009 hasConcept C118615104 @default.
- W2097339009 hasConcept C124504099 @default.
- W2097339009 hasConcept C154945302 @default.
- W2097339009 hasConcept C191178318 @default.
- W2097339009 hasConcept C2524010 @default.
- W2097339009 hasConcept C2780069185 @default.
- W2097339009 hasConcept C33923547 @default.
- W2097339009 hasConcept C41008148 @default.
- W2097339009 hasConcept C89600930 @default.
- W2097339009 hasConceptScore W2097339009C108710211 @default.
- W2097339009 hasConceptScore W2097339009C11413529 @default.
- W2097339009 hasConceptScore W2097339009C115961682 @default.
- W2097339009 hasConceptScore W2097339009C118615104 @default.
- W2097339009 hasConceptScore W2097339009C124504099 @default.
- W2097339009 hasConceptScore W2097339009C154945302 @default.
- W2097339009 hasConceptScore W2097339009C191178318 @default.
- W2097339009 hasConceptScore W2097339009C2524010 @default.
- W2097339009 hasConceptScore W2097339009C2780069185 @default.
- W2097339009 hasConceptScore W2097339009C33923547 @default.
- W2097339009 hasConceptScore W2097339009C41008148 @default.
- W2097339009 hasConceptScore W2097339009C89600930 @default.
- W2097339009 hasIssue "6" @default.
- W2097339009 hasLocation W20973390091 @default.
- W2097339009 hasLocation W20973390092 @default.
- W2097339009 hasLocation W20973390093 @default.
- W2097339009 hasLocation W20973390094 @default.
- W2097339009 hasOpenAccess W2097339009 @default.
- W2097339009 hasPrimaryLocation W20973390091 @default.
- W2097339009 hasRelatedWork W124243839 @default.
- W2097339009 hasRelatedWork W2009028679 @default.
- W2097339009 hasRelatedWork W2020103936 @default.
- W2097339009 hasRelatedWork W2115791626 @default.