Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097432588> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2097432588 abstract "The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point.In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated.When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal.Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the median GTV dose provides a very robust method for treating lung lesions." @default.
- W2097432588 created "2016-06-24" @default.
- W2097432588 creator A5009433246 @default.
- W2097432588 creator A5016598882 @default.
- W2097432588 creator A5039159416 @default.
- W2097432588 creator A5058092517 @default.
- W2097432588 creator A5067730699 @default.
- W2097432588 date "2014-10-16" @default.
- W2097432588 modified "2023-10-14" @default.
- W2097432588 title "GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms" @default.
- W2097432588 cites W1529775859 @default.
- W2097432588 cites W1587589877 @default.
- W2097432588 cites W1781607486 @default.
- W2097432588 cites W1967798147 @default.
- W2097432588 cites W1983615488 @default.
- W2097432588 cites W1984269341 @default.
- W2097432588 cites W1999835499 @default.
- W2097432588 cites W2008813541 @default.
- W2097432588 cites W2015117534 @default.
- W2097432588 cites W2015629209 @default.
- W2097432588 cites W2022684269 @default.
- W2097432588 cites W2034281240 @default.
- W2097432588 cites W2063910347 @default.
- W2097432588 cites W2076581684 @default.
- W2097432588 cites W2108088167 @default.
- W2097432588 cites W2120919324 @default.
- W2097432588 cites W2126605913 @default.
- W2097432588 cites W2127426304 @default.
- W2097432588 cites W2136706275 @default.
- W2097432588 cites W2137705266 @default.
- W2097432588 cites W2140057952 @default.
- W2097432588 cites W2158453486 @default.
- W2097432588 cites W2158786134 @default.
- W2097432588 cites W2159103516 @default.
- W2097432588 cites W2169767103 @default.
- W2097432588 doi "https://doi.org/10.1186/s13014-014-0223-5" @default.
- W2097432588 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4205279" @default.
- W2097432588 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25319444" @default.
- W2097432588 hasPublicationYear "2014" @default.
- W2097432588 type Work @default.
- W2097432588 sameAs 2097432588 @default.
- W2097432588 citedByCount "38" @default.
- W2097432588 countsByYear W20974325882014 @default.
- W2097432588 countsByYear W20974325882015 @default.
- W2097432588 countsByYear W20974325882016 @default.
- W2097432588 countsByYear W20974325882017 @default.
- W2097432588 countsByYear W20974325882018 @default.
- W2097432588 countsByYear W20974325882019 @default.
- W2097432588 countsByYear W20974325882020 @default.
- W2097432588 countsByYear W20974325882021 @default.
- W2097432588 countsByYear W20974325882022 @default.
- W2097432588 countsByYear W20974325882023 @default.
- W2097432588 crossrefType "journal-article" @default.
- W2097432588 hasAuthorship W2097432588A5009433246 @default.
- W2097432588 hasAuthorship W2097432588A5016598882 @default.
- W2097432588 hasAuthorship W2097432588A5039159416 @default.
- W2097432588 hasAuthorship W2097432588A5058092517 @default.
- W2097432588 hasAuthorship W2097432588A5067730699 @default.
- W2097432588 hasBestOaLocation W20974325881 @default.
- W2097432588 hasConcept C11413529 @default.
- W2097432588 hasConcept C126322002 @default.
- W2097432588 hasConcept C2426938 @default.
- W2097432588 hasConcept C2777714996 @default.
- W2097432588 hasConcept C2989005 @default.
- W2097432588 hasConcept C33923547 @default.
- W2097432588 hasConcept C71924100 @default.
- W2097432588 hasConcept C98274493 @default.
- W2097432588 hasConceptScore W2097432588C11413529 @default.
- W2097432588 hasConceptScore W2097432588C126322002 @default.
- W2097432588 hasConceptScore W2097432588C2426938 @default.
- W2097432588 hasConceptScore W2097432588C2777714996 @default.
- W2097432588 hasConceptScore W2097432588C2989005 @default.
- W2097432588 hasConceptScore W2097432588C33923547 @default.
- W2097432588 hasConceptScore W2097432588C71924100 @default.
- W2097432588 hasConceptScore W2097432588C98274493 @default.
- W2097432588 hasIssue "1" @default.
- W2097432588 hasLocation W20974325881 @default.
- W2097432588 hasLocation W20974325882 @default.
- W2097432588 hasLocation W20974325883 @default.
- W2097432588 hasLocation W20974325884 @default.
- W2097432588 hasOpenAccess W2097432588 @default.
- W2097432588 hasPrimaryLocation W20974325881 @default.
- W2097432588 hasRelatedWork W1866250621 @default.
- W2097432588 hasRelatedWork W1967583845 @default.
- W2097432588 hasRelatedWork W2007746127 @default.
- W2097432588 hasRelatedWork W2105617014 @default.
- W2097432588 hasRelatedWork W2347435568 @default.
- W2097432588 hasRelatedWork W2420746378 @default.
- W2097432588 hasRelatedWork W2780028606 @default.
- W2097432588 hasRelatedWork W3005652238 @default.
- W2097432588 hasRelatedWork W3097151906 @default.
- W2097432588 hasRelatedWork W4240407444 @default.
- W2097432588 hasVolume "9" @default.
- W2097432588 isParatext "false" @default.
- W2097432588 isRetracted "false" @default.
- W2097432588 magId "2097432588" @default.
- W2097432588 workType "article" @default.