Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097434524> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2097434524 abstract "PreviousNext No AccessUnconventional Resources Technology Conference, Denver, Colorado, 12-14 August 2013Variable Stimulated Reservoir Volume (SRV) Simulation: Eagle Ford Shale Case StudyAuthors: B. SulimanR. MeekR. HullH. BelloD. PortisP. RichmondB. SulimanPioneer Natural ResourcesSearch for more papers by this author, R. MeekPioneer Natural ResourcesSearch for more papers by this author, R. HullPioneer Natural ResourcesSearch for more papers by this author, H. BelloPioneer Natural ResourcesSearch for more papers by this author, D. PortisPioneer Natural ResourcesSearch for more papers by this author, and P. RichmondPioneer Natural ResourcesSearch for more papers by this authorhttps://doi.org/10.1190/urtec2013-057 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract URTeC 1582061 Production data analysis and reservoir simulation of the Eagle Ford shale are very challenging due to the complex characteristics of the reservoir and the fluids. Eagle Ford reservoir complexity is expressed in its vertical and horizontal petro-physical heterogeneity, stress-sensitive permeability, and existence of multi-scale natural fracture and fault systems. This complexity makes the prediction of the geometry and conductivity of the hydraulic fracture resulting from the stimulation process rather challenging. On the other hand, reservoir fluid complexity is demonstrated in multi-phase flow, liquid loading in the wellbore, potential for condensate banking, etc. Based on this complexity, 3D reservoir modeling and numerical simulation have the relative advantage of addressing irregular fracture geometry, variable SRV, and multi-phase flow aspects. The South Texas Asset Team at Pioneer Natural Resources is establishing a workflow for dynamic reservoir modeling that can integrate all reservoir/wellbore parameters (formation evaluation, drilling, completion, stimulation, pre-/post-fracture surveillance, and well performance data) in order to address key questions relating to field development; such as depletion efficiency, drainage area, wells interference, and condensate banking effects. In this paper, a case study is presented to demonstrate the integration of various measurements and surveillance data to build a variable SRV reservoir model. The variable SRV model described here has the following building blocks: 1) Formation evaluation: included all the reservoir characterization data derived from logs and 3D seismic inversions and structural attributes. 2) Surveillance data integration: microseismic data (backbone for this work) are integrated with chemical and radioactive tracer logs. 3) Well performance data integration: Production data is used to determine different flow regimes during the well history and to set bounds for stimulation parameters, such as fracture half-length and permeability (Xfk). 4) Numerical simulation: Micro-seismic attributes (density and magnitude) are converted to a permeability model after being calibrated with tracer logs and production flow regime parameters (Xfk). PVT data is matched against an Equation of State (EOS) and input into the model. Production data history matching, sensitivity and forecasting indicate the following: a) The SRV created by fracture stimulation has permeability fading away from the wellbore; b) Fracture geometry is variable and results in an irregular drainage area along the lateral; C) Potential onset of condensate banking near wellbore and along the fracture(s) can occur within the first year of production if draw down is not managed properly. Keywords: fluid, heterogeneous, permeability, fractures, faults, 3D, modelingPermalink: https://doi.org/10.1190/urtec2013-057FiguresReferencesRelatedDetailsCited byStudy on Evaluation Method of Water Injection Efficiency in Low-Permeability ReservoirGeofluids, Vol. 2021A Unique Approach of Numerical Simulation with Multistage Hydraulic Fractures Modeling of a Complex Regional Scale Unconventional Biogenic Gas Reservoir. A Case Study of Miocene Gachsaran Formation, Abu Dhabi, United Arab Emirates9 November 2020Uncertainty analysis: influence of hydraulic fracturing on overlying aquifers in the presence of leaky abandoned wells27 June 2018 | Environmental Earth Sciences, Vol. 77, No. 13Case Study for Effective Stimulated Reservoir Volume Identification in Unconventional ReservoirsJournal of the Korean Society of Mineral and Energy Resources Engineers, Vol. 55, No. 2A multi-linear flow model for multistage fractured horizontal wells in shale reservoirs19 September 2016 | Journal of Petroleum Exploration and Production Technology, Vol. 7, No. 3Polymer-Flooding Economics, From Pilot to Field Implementation10 April 2017 | SPE Economics & Management, Vol. 9, No. 03Approximate Bayesian Computation for Probabilistic Decline-Curve Analysis in Unconventional Reservoirs1 May 2017 | SPE Reservoir Evaluation & Engineering, Vol. 20, No. 02Fracture Network Characterization by Analyzing Flowback Salts: Scale-Up of Experimental Data15 February 2017Analysis of Fracturing Network Evolution Behaviors in Random Naturally Fractured Rock Blocks19 July 2016 | Rock Mechanics and Rock Engineering, Vol. 49, No. 11Quantitative Evaluation of Key Controls on Eagle Ford Shale Gas Condensate Production Using History Match and Sensitivity Analysis21 September 2016What Factors Control Shale Gas Production Decline Trend: A Comprehensive Analysis and Investigation10 May 2016Polymer Flooding Economics, from Pilot to Field Implementation at the Example of the 8 TH Reservoir, Austria11 April 2016A Validation Assessment of Microseismic Monitoring1 February 2016Stimulated Reservoir Volume 101: SRV in a Nutshell6 December 2015Workflow to Optimize Field Development Strategy and Maximize Recovery of a Shale Play24 November 2015Rate Transient Analysis in Hydraulic Fractured Tight Gas Reservoir20 October 2015Geomechanical modeling of hydraulic fractures interacting with natural fractures — Validation with microseismic and tracer data from the Marcellus and Eagle FordYamina E. Aimene and Ahmed Ouenes17 July 2015 | Interpretation, Vol. 3, No. 3An Integrated Approach to Stimulated Reservoir Interpretations of the Permian Wolfcamp ShaleD.R. Collins*, G. Monson, W. Chu, and A. Quinn12 August 2015Well Space Modeling, SRV Prediction Using Microseismic, Seismic Rock Properties and Structural Attributes in the Eagle Ford Shale of South TexasRobert A. Meek, Hector Bello, Robert Hull*, and Bailo Suliman12 August 2015Connecting the Dots: Microseismic-Derived Connectivity for Estimating Volumes in Low-Permeability Reservoirs4 August 2015Eagle Ford Well Spacing: A Methodology to Integrate, Analyze, and Visualize Multisource Data in Solving a Complex Value-Focused Problem4 August 2015Predicting Microseismicity from the Geomechanical Modeling of Multiple Hydraulic Fractures Interacting with Natural Fractures - Application to the Marcellus and Eagle FordY.E. Aimene*, J.A. Nairn, and A. Boudjema24 September 2014The Performance Evaluation of Old Well after SRV in Ordos Basin Tight Oil Reservoir9 June 2014A Study of Dynamic and Static Factors That Are Critical to Multi-Well Reservoir Simulation of Liquid Rich Shale Plays1 April 2014Estimation of Stimulated Reservoir Volume Using the Concept of Shale Capacity and its Validation with Microseismic and Well Performance25 February 2014Resolving Production Trends in Shale Reservoirs—An Eagle Ford Case Study from Localized Reservoir Characterization to Basin UnderstandingKatharine Moncada, Keith Atwood, Raphael Altman, Raj Malpani, Shirley Indriati, and Richard Clayton26 September 2013Eagle Ford Completions Optimization – An Operator’s ApproachOmkar Jaripatke and Nimish Pandya26 September 2013What Broke? Microseismic analysis using seismic derived rock properties and structural attributes in the Eagle Ford playRobert Meek, Bailo Suliman, Robert Hull, Hector Bello, and Doug Portis26 September 2013 Unconventional Resources Technology Conference, Denver, Colorado, 12-14 August 2013ISSN (online):2159-6832Copyright: 2013 Pages: 1229 publication data© 2013 Published in electronic format with permission by the Society of Exploration Geophysicists, American Association of Petroleum Geologists, and Society of Petroleum EngineersPublisher:Unconventional Resources Technology ConferenceSociety of Exploration Geophysicists HistoryPublished Online: 26 Sep 2013 CITATION INFORMATION B. Suliman, R. Meek, R. Hull, H. Bello, D. Portis, and P. Richmond, (2013), Variable Stimulated Reservoir Volume (SRV) Simulation: Eagle Ford Shale Case Study, SEG Global Meeting Abstracts : 544-552. https://doi.org/10.1190/urtec2013-057 Plain-Language Summary Keywordsfluidheterogeneouspermeabilityfracturesfaults3DmodelingPDF DownloadLoading ..." @default.
- W2097434524 created "2016-06-24" @default.
- W2097434524 creator A5007827073 @default.
- W2097434524 creator A5020448153 @default.
- W2097434524 creator A5024143090 @default.
- W2097434524 creator A5032993259 @default.
- W2097434524 creator A5068139685 @default.
- W2097434524 creator A5076299234 @default.
- W2097434524 date "2013-08-14" @default.
- W2097434524 modified "2023-10-17" @default.
- W2097434524 title "Variable Stimulated Reservoir Volume (SRV) Simulation: Eagle Ford Shale Case Study" @default.
- W2097434524 cites W2026674244 @default.
- W2097434524 cites W2039661871 @default.
- W2097434524 cites W2071095224 @default.
- W2097434524 cites W2165464619 @default.
- W2097434524 cites W4237094557 @default.
- W2097434524 cites W4238792020 @default.
- W2097434524 cites W4239173255 @default.
- W2097434524 cites W4243874302 @default.
- W2097434524 cites W4245844861 @default.
- W2097434524 cites W4376595535 @default.
- W2097434524 doi "https://doi.org/10.1190/urtec2013-057" @default.
- W2097434524 hasPublicationYear "2013" @default.
- W2097434524 type Work @default.
- W2097434524 sameAs 2097434524 @default.
- W2097434524 citedByCount "36" @default.
- W2097434524 countsByYear W20974345242013 @default.
- W2097434524 countsByYear W20974345242014 @default.
- W2097434524 countsByYear W20974345242015 @default.
- W2097434524 countsByYear W20974345242016 @default.
- W2097434524 countsByYear W20974345242017 @default.
- W2097434524 countsByYear W20974345242018 @default.
- W2097434524 countsByYear W20974345242019 @default.
- W2097434524 countsByYear W20974345242020 @default.
- W2097434524 countsByYear W20974345242021 @default.
- W2097434524 countsByYear W20974345242023 @default.
- W2097434524 crossrefType "proceedings-article" @default.
- W2097434524 hasAuthorship W2097434524A5007827073 @default.
- W2097434524 hasAuthorship W2097434524A5020448153 @default.
- W2097434524 hasAuthorship W2097434524A5024143090 @default.
- W2097434524 hasAuthorship W2097434524A5032993259 @default.
- W2097434524 hasAuthorship W2097434524A5068139685 @default.
- W2097434524 hasAuthorship W2097434524A5076299234 @default.
- W2097434524 hasConcept C121332964 @default.
- W2097434524 hasConcept C127313418 @default.
- W2097434524 hasConcept C134306372 @default.
- W2097434524 hasConcept C151730666 @default.
- W2097434524 hasConcept C153127940 @default.
- W2097434524 hasConcept C182365436 @default.
- W2097434524 hasConcept C20556612 @default.
- W2097434524 hasConcept C2780985876 @default.
- W2097434524 hasConcept C33923547 @default.
- W2097434524 hasConcept C78762247 @default.
- W2097434524 hasConcept C97355855 @default.
- W2097434524 hasConceptScore W2097434524C121332964 @default.
- W2097434524 hasConceptScore W2097434524C127313418 @default.
- W2097434524 hasConceptScore W2097434524C134306372 @default.
- W2097434524 hasConceptScore W2097434524C151730666 @default.
- W2097434524 hasConceptScore W2097434524C153127940 @default.
- W2097434524 hasConceptScore W2097434524C182365436 @default.
- W2097434524 hasConceptScore W2097434524C20556612 @default.
- W2097434524 hasConceptScore W2097434524C2780985876 @default.
- W2097434524 hasConceptScore W2097434524C33923547 @default.
- W2097434524 hasConceptScore W2097434524C78762247 @default.
- W2097434524 hasConceptScore W2097434524C97355855 @default.
- W2097434524 hasLocation W20974345241 @default.
- W2097434524 hasOpenAccess W2097434524 @default.
- W2097434524 hasPrimaryLocation W20974345241 @default.
- W2097434524 hasRelatedWork W1963609974 @default.
- W2097434524 hasRelatedWork W1972519760 @default.
- W2097434524 hasRelatedWork W1997529584 @default.
- W2097434524 hasRelatedWork W2021550057 @default.
- W2097434524 hasRelatedWork W2078081088 @default.
- W2097434524 hasRelatedWork W2078915209 @default.
- W2097434524 hasRelatedWork W2109699401 @default.
- W2097434524 hasRelatedWork W2150593945 @default.
- W2097434524 hasRelatedWork W3138420729 @default.
- W2097434524 hasRelatedWork W3216603114 @default.
- W2097434524 isParatext "false" @default.
- W2097434524 isRetracted "false" @default.
- W2097434524 magId "2097434524" @default.
- W2097434524 workType "article" @default.