Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097531825> ?p ?o ?g. }
- W2097531825 abstract "The study of clinical samples is often limited by the amount of material available to study. While proteins cannot be multiplied in their natural form, DNA and RNA can be amplified from small specimens and used for high-throughput analyses. Therefore, genetic studies offer the best opportunity to screen for novel insights of human pathology when little material is available. Precise estimates of DNA copy numbers in a given specimen are necessary. However, most studies investigate static variables such as the genetic background of patients or mutations within pathological specimens without a need to assess proportionality of expression among different genes throughout the genome. Comparative genomic hybridization of DNA samples represents a crude exception to this rule since genomic amplification or deletion is compared among different specimens directly. For gene expression analysis, however, it is critical to accurately estimate the proportional expression of distinct RNA transcripts since such proportions directly govern cell function by modulating protein expression. Furthermore, comparative estimates of relative RNA expression at different time points portray the response of cells to environmental stimuli, indirectly informing about broader biological events affecting a particular tissue in physiological or pathological conditions. This cognitive reaction of cells is similar to the detection of electroencephalographic patterns which inform about the status of the brain in response to external stimuli. As our need to understand human pathophysiology at the global level increases, the development and refinement of technologies for high fidelity messenger RNA amplification have become the focus of increasing interest during the past decade. The need to increase the abundance of RNA has been met not only for gene specific amplification, but, most importantly for global transcriptome wide, unbiased amplification. Now gene-specific, unbiased transcriptome wide amplification accurately maintains proportionality among all RNA species within a given specimen. This allows the utilization of clinical material obtained with minimally invasive methods such as fine needle aspirates (FNA) or cytological washings for high throughput functional genomics studies. This review provides a comprehensive and updated discussion of the literature in the subject and critically discusses the main approaches, the pitfalls and provides practical suggestions for successful unbiased amplification of the whole transcriptome in clinical samples." @default.
- W2097531825 created "2016-06-24" @default.
- W2097531825 creator A5049816096 @default.
- W2097531825 date "2005-07-25" @default.
- W2097531825 modified "2023-10-18" @default.
- W2097531825 title "RNA amplification for successful gene profiling analysis" @default.
- W2097531825 cites W1483828791 @default.
- W2097531825 cites W1484784716 @default.
- W2097531825 cites W1521385428 @default.
- W2097531825 cites W1534237756 @default.
- W2097531825 cites W1542517392 @default.
- W2097531825 cites W1543900306 @default.
- W2097531825 cites W1553401382 @default.
- W2097531825 cites W1595748122 @default.
- W2097531825 cites W1640363362 @default.
- W2097531825 cites W1651215666 @default.
- W2097531825 cites W1883416214 @default.
- W2097531825 cites W1963661721 @default.
- W2097531825 cites W1969752714 @default.
- W2097531825 cites W1971778303 @default.
- W2097531825 cites W1978971121 @default.
- W2097531825 cites W1981899524 @default.
- W2097531825 cites W1985418384 @default.
- W2097531825 cites W1989762673 @default.
- W2097531825 cites W1992621908 @default.
- W2097531825 cites W1995385198 @default.
- W2097531825 cites W1995548146 @default.
- W2097531825 cites W1995595423 @default.
- W2097531825 cites W2002245552 @default.
- W2097531825 cites W2009694933 @default.
- W2097531825 cites W2013537058 @default.
- W2097531825 cites W2015173540 @default.
- W2097531825 cites W2016815048 @default.
- W2097531825 cites W2017206323 @default.
- W2097531825 cites W2023325853 @default.
- W2097531825 cites W2027499014 @default.
- W2097531825 cites W2033864713 @default.
- W2097531825 cites W2038997703 @default.
- W2097531825 cites W2045730779 @default.
- W2097531825 cites W2051221489 @default.
- W2097531825 cites W2052442048 @default.
- W2097531825 cites W2058027659 @default.
- W2097531825 cites W2059602687 @default.
- W2097531825 cites W2072270063 @default.
- W2097531825 cites W2078433234 @default.
- W2097531825 cites W2080636973 @default.
- W2097531825 cites W2085673672 @default.
- W2097531825 cites W2086707656 @default.
- W2097531825 cites W2087214907 @default.
- W2097531825 cites W2091239909 @default.
- W2097531825 cites W2094308016 @default.
- W2097531825 cites W2101330216 @default.
- W2097531825 cites W2102350205 @default.
- W2097531825 cites W2113474552 @default.
- W2097531825 cites W2116943123 @default.
- W2097531825 cites W2117013761 @default.
- W2097531825 cites W2121777852 @default.
- W2097531825 cites W2123248953 @default.
- W2097531825 cites W2124664940 @default.
- W2097531825 cites W2131097599 @default.
- W2097531825 cites W2138218344 @default.
- W2097531825 cites W2140330371 @default.
- W2097531825 cites W2147859608 @default.
- W2097531825 cites W2151711208 @default.
- W2097531825 cites W2155094477 @default.
- W2097531825 cites W2157426885 @default.
- W2097531825 cites W2159400887 @default.
- W2097531825 cites W2160743028 @default.
- W2097531825 cites W2162578061 @default.
- W2097531825 cites W2162598871 @default.
- W2097531825 cites W2165443279 @default.
- W2097531825 cites W22951038 @default.
- W2097531825 cites W238668910 @default.
- W2097531825 cites W2404208410 @default.
- W2097531825 cites W2472094442 @default.
- W2097531825 cites W4247420482 @default.
- W2097531825 doi "https://doi.org/10.1186/1479-5876-3-28" @default.
- W2097531825 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1201175" @default.
- W2097531825 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16042807" @default.
- W2097531825 hasPublicationYear "2005" @default.
- W2097531825 type Work @default.
- W2097531825 sameAs 2097531825 @default.
- W2097531825 citedByCount "72" @default.
- W2097531825 countsByYear W20975318252012 @default.
- W2097531825 countsByYear W20975318252013 @default.
- W2097531825 countsByYear W20975318252014 @default.
- W2097531825 countsByYear W20975318252015 @default.
- W2097531825 countsByYear W20975318252016 @default.
- W2097531825 countsByYear W20975318252017 @default.
- W2097531825 countsByYear W20975318252020 @default.
- W2097531825 crossrefType "journal-article" @default.
- W2097531825 hasAuthorship W2097531825A5049816096 @default.
- W2097531825 hasBestOaLocation W20975318251 @default.
- W2097531825 hasConcept C104317684 @default.
- W2097531825 hasConcept C105580179 @default.
- W2097531825 hasConcept C141231307 @default.
- W2097531825 hasConcept C150194340 @default.
- W2097531825 hasConcept C17757408 @default.
- W2097531825 hasConcept C18431079 @default.
- W2097531825 hasConcept C189206191 @default.