Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097633543> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2097633543 endingPage "4696" @default.
- W2097633543 startingPage "4687" @default.
- W2097633543 abstract "Most popular feature selection methods for text classification such as information gain (also known as ''mutual information''), chi-square, and odds ratio, are based on binary information indicating the presence/absence of the feature (or ''term'') in each training document. As such, these methods do not exploit a rich source of information, namely, the information concerning how frequently the feature occurs in the training document (term frequency). In order to overcome this drawback, when doing feature selection we logically break down each training document of length k into k training ''micro-documents'', each consisting of a single word occurrence and endowed with the same class information of the original training document. This move has the double effect of (a) allowing all the original feature selection methods based on binary information to be still straightforwardly applicable, and (b) making them sensitive to term frequency information. We study the impact of this strategy in the case of ordinal text classification, a type of text classification dealing with classes lying on an ordinal scale, and recently made popular by applications in customer relationship management, market research, and Web 2.0 mining. We run experiments using four recently introduced feature selection functions, two learning methods of the support vector machines family, and two large datasets of product reviews. The experiments show that the use of this strategy substantially improves the accuracy of ordinal text classification." @default.
- W2097633543 created "2016-06-24" @default.
- W2097633543 creator A5001802010 @default.
- W2097633543 creator A5063975186 @default.
- W2097633543 creator A5082069715 @default.
- W2097633543 date "2013-09-01" @default.
- W2097633543 modified "2023-09-23" @default.
- W2097633543 title "Using micro-documents for feature selection: The case of ordinal text classification" @default.
- W2097633543 cites W1576242567 @default.
- W2097633543 cites W1588756676 @default.
- W2097633543 cites W1619226191 @default.
- W2097633543 cites W1965657003 @default.
- W2097633543 cites W1978394996 @default.
- W2097633543 cites W1980896222 @default.
- W2097633543 cites W2030018477 @default.
- W2097633543 cites W2114755815 @default.
- W2097633543 cites W2143426320 @default.
- W2097633543 cites W2143747826 @default.
- W2097633543 cites W2144415203 @default.
- W2097633543 cites W2149684865 @default.
- W2097633543 cites W4247582552 @default.
- W2097633543 cites W4251326898 @default.
- W2097633543 doi "https://doi.org/10.1016/j.eswa.2013.02.010" @default.
- W2097633543 hasPublicationYear "2013" @default.
- W2097633543 type Work @default.
- W2097633543 sameAs 2097633543 @default.
- W2097633543 citedByCount "20" @default.
- W2097633543 countsByYear W20976335432013 @default.
- W2097633543 countsByYear W20976335432014 @default.
- W2097633543 countsByYear W20976335432015 @default.
- W2097633543 countsByYear W20976335432016 @default.
- W2097633543 countsByYear W20976335432017 @default.
- W2097633543 countsByYear W20976335432018 @default.
- W2097633543 countsByYear W20976335432019 @default.
- W2097633543 countsByYear W20976335432020 @default.
- W2097633543 countsByYear W20976335432021 @default.
- W2097633543 countsByYear W20976335432022 @default.
- W2097633543 countsByYear W20976335432023 @default.
- W2097633543 crossrefType "journal-article" @default.
- W2097633543 hasAuthorship W2097633543A5001802010 @default.
- W2097633543 hasAuthorship W2097633543A5063975186 @default.
- W2097633543 hasAuthorship W2097633543A5082069715 @default.
- W2097633543 hasBestOaLocation W20976335432 @default.
- W2097633543 hasConcept C119857082 @default.
- W2097633543 hasConcept C124101348 @default.
- W2097633543 hasConcept C138885662 @default.
- W2097633543 hasConcept C148483581 @default.
- W2097633543 hasConcept C153180895 @default.
- W2097633543 hasConcept C154945302 @default.
- W2097633543 hasConcept C204321447 @default.
- W2097633543 hasConcept C23123220 @default.
- W2097633543 hasConcept C2776401178 @default.
- W2097633543 hasConcept C41008148 @default.
- W2097633543 hasConcept C41895202 @default.
- W2097633543 hasConcept C81386100 @default.
- W2097633543 hasConcept C81917197 @default.
- W2097633543 hasConcept C85461838 @default.
- W2097633543 hasConceptScore W2097633543C119857082 @default.
- W2097633543 hasConceptScore W2097633543C124101348 @default.
- W2097633543 hasConceptScore W2097633543C138885662 @default.
- W2097633543 hasConceptScore W2097633543C148483581 @default.
- W2097633543 hasConceptScore W2097633543C153180895 @default.
- W2097633543 hasConceptScore W2097633543C154945302 @default.
- W2097633543 hasConceptScore W2097633543C204321447 @default.
- W2097633543 hasConceptScore W2097633543C23123220 @default.
- W2097633543 hasConceptScore W2097633543C2776401178 @default.
- W2097633543 hasConceptScore W2097633543C41008148 @default.
- W2097633543 hasConceptScore W2097633543C41895202 @default.
- W2097633543 hasConceptScore W2097633543C81386100 @default.
- W2097633543 hasConceptScore W2097633543C81917197 @default.
- W2097633543 hasConceptScore W2097633543C85461838 @default.
- W2097633543 hasIssue "11" @default.
- W2097633543 hasLocation W20976335431 @default.
- W2097633543 hasLocation W20976335432 @default.
- W2097633543 hasOpenAccess W2097633543 @default.
- W2097633543 hasPrimaryLocation W20976335431 @default.
- W2097633543 hasRelatedWork W2370314646 @default.
- W2097633543 hasRelatedWork W2374344280 @default.
- W2097633543 hasRelatedWork W2388613071 @default.
- W2097633543 hasRelatedWork W3107474891 @default.
- W2097633543 hasRelatedWork W3174196512 @default.
- W2097633543 hasRelatedWork W3210877509 @default.
- W2097633543 hasRelatedWork W4212852473 @default.
- W2097633543 hasRelatedWork W4225360065 @default.
- W2097633543 hasRelatedWork W4307883119 @default.
- W2097633543 hasRelatedWork W2345184372 @default.
- W2097633543 hasVolume "40" @default.
- W2097633543 isParatext "false" @default.
- W2097633543 isRetracted "false" @default.
- W2097633543 magId "2097633543" @default.
- W2097633543 workType "article" @default.