Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097642458> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2097642458 abstract "Online predictive modeling of streaming data is a key task for big data analytics. In this paper, a novel approach for efficient online learning of regression trees is proposed, which continuously updates, rather than retrains, the tree as more labeled data become available. A conformal predictor outputs prediction sets instead of point predictions; which for regression translates into prediction intervals. The key property of a conformal predictor is that it is always valid, i.e., the error rate, on novel data, is bounded by a preset significance level. Here, we suggest applying Mondrian conformal prediction on top of the resulting models, in order to obtain regression trees where not only the tree, but also each and every rule, corresponding to a path from the root node to a leaf, is valid. Using Mondrian conformal prediction, it becomes possible to analyze and explore the different rules separately, knowing that their accuracy, in the long run, will not be below the preset significance level. An empirical investigation, using 17 publicly available data sets, confirms that the resulting rules are independently valid, but also shows that the prediction intervals are smaller, on average, than when only the global model is required to be valid. All-in-all, the suggested method provides a data miner or a decision maker with highly informative predictive models of streaming data." @default.
- W2097642458 created "2016-06-24" @default.
- W2097642458 creator A5033008105 @default.
- W2097642458 creator A5052528936 @default.
- W2097642458 creator A5059387263 @default.
- W2097642458 creator A5072426290 @default.
- W2097642458 date "2014-10-01" @default.
- W2097642458 modified "2023-10-17" @default.
- W2097642458 title "Regression trees for streaming data with local performance guarantees" @default.
- W2097642458 cites W115922836 @default.
- W2097642458 cites W1499689786 @default.
- W2097642458 cites W1516923404 @default.
- W2097642458 cites W1521746852 @default.
- W2097642458 cites W1589298886 @default.
- W2097642458 cites W1980087458 @default.
- W2097642458 cites W2002170431 @default.
- W2097642458 cites W2010546252 @default.
- W2097642458 cites W2010657328 @default.
- W2097642458 cites W2039636933 @default.
- W2097642458 cites W2063046703 @default.
- W2097642458 cites W2068714596 @default.
- W2097642458 cites W2099302642 @default.
- W2097642458 cites W2099419573 @default.
- W2097642458 cites W2117112756 @default.
- W2097642458 cites W2124357902 @default.
- W2097642458 cites W2133122021 @default.
- W2097642458 cites W2156583932 @default.
- W2097642458 cites W2163517193 @default.
- W2097642458 doi "https://doi.org/10.1109/bigdata.2014.7004263" @default.
- W2097642458 hasPublicationYear "2014" @default.
- W2097642458 type Work @default.
- W2097642458 sameAs 2097642458 @default.
- W2097642458 citedByCount "7" @default.
- W2097642458 countsByYear W20976424582015 @default.
- W2097642458 countsByYear W20976424582017 @default.
- W2097642458 countsByYear W20976424582019 @default.
- W2097642458 countsByYear W20976424582021 @default.
- W2097642458 crossrefType "proceedings-article" @default.
- W2097642458 hasAuthorship W2097642458A5033008105 @default.
- W2097642458 hasAuthorship W2097642458A5052528936 @default.
- W2097642458 hasAuthorship W2097642458A5059387263 @default.
- W2097642458 hasAuthorship W2097642458A5072426290 @default.
- W2097642458 hasBestOaLocation W20976424582 @default.
- W2097642458 hasConcept C124101348 @default.
- W2097642458 hasConcept C2777611316 @default.
- W2097642458 hasConcept C41008148 @default.
- W2097642458 hasConceptScore W2097642458C124101348 @default.
- W2097642458 hasConceptScore W2097642458C2777611316 @default.
- W2097642458 hasConceptScore W2097642458C41008148 @default.
- W2097642458 hasLocation W20976424581 @default.
- W2097642458 hasLocation W20976424582 @default.
- W2097642458 hasLocation W20976424583 @default.
- W2097642458 hasLocation W20976424584 @default.
- W2097642458 hasLocation W20976424585 @default.
- W2097642458 hasOpenAccess W2097642458 @default.
- W2097642458 hasPrimaryLocation W20976424581 @default.
- W2097642458 hasRelatedWork W117528671 @default.
- W2097642458 hasRelatedWork W2023497185 @default.
- W2097642458 hasRelatedWork W2048472084 @default.
- W2097642458 hasRelatedWork W2106287515 @default.
- W2097642458 hasRelatedWork W2381880241 @default.
- W2097642458 hasRelatedWork W2382164943 @default.
- W2097642458 hasRelatedWork W2384129116 @default.
- W2097642458 hasRelatedWork W2751411564 @default.
- W2097642458 hasRelatedWork W2901801304 @default.
- W2097642458 hasRelatedWork W2612939388 @default.
- W2097642458 isParatext "false" @default.
- W2097642458 isRetracted "false" @default.
- W2097642458 magId "2097642458" @default.
- W2097642458 workType "article" @default.