Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097645103> ?p ?o ?g. }
- W2097645103 endingPage "1502" @default.
- W2097645103 startingPage "1493" @default.
- W2097645103 abstract "Abstract Prediction of genetic risk for disease is needed for preventive and personalized medicine. Genome-wide association studies have found unprecedented numbers of variants associated with complex human traits and diseases. However, these variants explain only a small proportion of genetic risk. Mounting evidence suggests that many traits, relevant to public health, are affected by large numbers of small-effect genes and that prediction of genetic risk to those traits and diseases could be improved by incorporating large numbers of markers into whole-genome prediction (WGP) models. We developed a WGP model incorporating thousands of markers for prediction of skin cancer risk in humans. We also considered other ways of incorporating genetic information into prediction models, such as family history or ancestry (using principal components, PCs, of informative markers). Prediction accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) estimated in a cross-validation. Incorporation of genetic information (i.e., familial relationships, PCs, or WGP) yielded a significant increase in prediction accuracy: from an AUC of 0.53 for a baseline model that accounted for nongenetic covariates to AUCs of 0.58 (pedigree), 0.62 (PCs), and 0.64 (WGP). In summary, prediction of skin cancer risk could be improved by considering genetic information and using a large number of single-nucleotide polymorphisms (SNPs) in a WGP model, which allows for the detection of patterns of genetic risk that are above and beyond those that can be captured using family history. We discuss avenues for improving prediction accuracy and speculate on the possible use of WGP to prospectively identify individuals at high risk." @default.
- W2097645103 created "2016-06-24" @default.
- W2097645103 creator A5009058174 @default.
- W2097645103 creator A5031831970 @default.
- W2097645103 creator A5062622249 @default.
- W2097645103 creator A5063947394 @default.
- W2097645103 creator A5069279080 @default.
- W2097645103 creator A5086059667 @default.
- W2097645103 creator A5086458556 @default.
- W2097645103 date "2012-12-01" @default.
- W2097645103 modified "2023-10-18" @default.
- W2097645103 title "A Comprehensive Genetic Approach for Improving Prediction of Skin Cancer Risk in Humans" @default.
- W2097645103 cites W1928998639 @default.
- W2097645103 cites W1978629618 @default.
- W2097645103 cites W1980991473 @default.
- W2097645103 cites W1982652137 @default.
- W2097645103 cites W1982957378 @default.
- W2097645103 cites W1988626288 @default.
- W2097645103 cites W1991415175 @default.
- W2097645103 cites W1992140675 @default.
- W2097645103 cites W1993358791 @default.
- W2097645103 cites W2008014772 @default.
- W2097645103 cites W2011753368 @default.
- W2097645103 cites W2011819931 @default.
- W2097645103 cites W2023673366 @default.
- W2097645103 cites W2027773777 @default.
- W2097645103 cites W2027837618 @default.
- W2097645103 cites W2035580331 @default.
- W2097645103 cites W2039135009 @default.
- W2097645103 cites W2040898244 @default.
- W2097645103 cites W2045042332 @default.
- W2097645103 cites W2047923046 @default.
- W2097645103 cites W2052074824 @default.
- W2097645103 cites W2053724807 @default.
- W2097645103 cites W2066745970 @default.
- W2097645103 cites W2072214908 @default.
- W2097645103 cites W2077239836 @default.
- W2097645103 cites W2079800114 @default.
- W2097645103 cites W2081984856 @default.
- W2097645103 cites W2083384274 @default.
- W2097645103 cites W2095119242 @default.
- W2097645103 cites W2098597355 @default.
- W2097645103 cites W2102127185 @default.
- W2097645103 cites W2109349581 @default.
- W2097645103 cites W2110787179 @default.
- W2097645103 cites W2113492305 @default.
- W2097645103 cites W2113531954 @default.
- W2097645103 cites W2117980841 @default.
- W2097645103 cites W2119372134 @default.
- W2097645103 cites W2123466824 @default.
- W2097645103 cites W2127843966 @default.
- W2097645103 cites W2130434665 @default.
- W2097645103 cites W2133148918 @default.
- W2097645103 cites W2145126338 @default.
- W2097645103 cites W2154978106 @default.
- W2097645103 cites W2155496693 @default.
- W2097645103 cites W2158698691 @default.
- W2097645103 cites W2170917431 @default.
- W2097645103 cites W2303043072 @default.
- W2097645103 cites W4386007350 @default.
- W2097645103 doi "https://doi.org/10.1534/genetics.112.141705" @default.
- W2097645103 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3512154" @default.
- W2097645103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23051645" @default.
- W2097645103 hasPublicationYear "2012" @default.
- W2097645103 type Work @default.
- W2097645103 sameAs 2097645103 @default.
- W2097645103 citedByCount "50" @default.
- W2097645103 countsByYear W20976451032013 @default.
- W2097645103 countsByYear W20976451032014 @default.
- W2097645103 countsByYear W20976451032015 @default.
- W2097645103 countsByYear W20976451032016 @default.
- W2097645103 countsByYear W20976451032017 @default.
- W2097645103 countsByYear W20976451032018 @default.
- W2097645103 countsByYear W20976451032019 @default.
- W2097645103 countsByYear W20976451032020 @default.
- W2097645103 countsByYear W20976451032021 @default.
- W2097645103 countsByYear W20976451032022 @default.
- W2097645103 crossrefType "journal-article" @default.
- W2097645103 hasAuthorship W2097645103A5009058174 @default.
- W2097645103 hasAuthorship W2097645103A5031831970 @default.
- W2097645103 hasAuthorship W2097645103A5062622249 @default.
- W2097645103 hasAuthorship W2097645103A5063947394 @default.
- W2097645103 hasAuthorship W2097645103A5069279080 @default.
- W2097645103 hasAuthorship W2097645103A5086059667 @default.
- W2097645103 hasAuthorship W2097645103A5086458556 @default.
- W2097645103 hasBestOaLocation W20976451031 @default.
- W2097645103 hasConcept C104317684 @default.
- W2097645103 hasConcept C106208931 @default.
- W2097645103 hasConcept C119043178 @default.
- W2097645103 hasConcept C119857082 @default.
- W2097645103 hasConcept C12174686 @default.
- W2097645103 hasConcept C135763542 @default.
- W2097645103 hasConcept C153209595 @default.
- W2097645103 hasConcept C186413461 @default.
- W2097645103 hasConcept C190789776 @default.
- W2097645103 hasConcept C2780673598 @default.
- W2097645103 hasConcept C2992519594 @default.
- W2097645103 hasConcept C38652104 @default.