Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097645701> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2097645701 abstract "This paper introduces the problem of combining multiple partitionings of a set of objects into a single consolidated clustering without accessing the features or algorithms that determined these partitionings. We first identify several application scenarios for the resultant 'knowledge reuse' framework that we call cluster ensembles. The cluster ensemble problem is then formalized as a combinatorial optimization problem in terms of shared mutual information. In addition to a direct maximization approach, we propose three effective and efficient techniques for obtaining high-quality combiners (consensus functions). The first combiner induces a similarity measure from the partitionings and then reclusters the objects. The second combiner is based on hypergraph partitioning. The third one collapses groups of clusters into meta-clusters which then compete for each object to determine the combined clustering. Due to the low computational costs of our techniques, it is quite feasible to use a supra-consensus function that evaluates all three approaches against the objective function and picks the best solution for a given situation. We evaluate the effectiveness of cluster ensembles in three qualitatively different application scenarios: (i) where the original clusters were formed based on non-identical sets of features, (ii) where the original clustering algorithms worked on non-identical sets of objects, and (iii) where a common data-set is used and the main purpose of combining multiple clusterings is to improve the quality and robustness of the solution. Promising results are obtained in all three situations for synthetic as well as real data-sets." @default.
- W2097645701 created "2016-06-24" @default.
- W2097645701 creator A5058100924 @default.
- W2097645701 creator A5085896252 @default.
- W2097645701 date "2000-01-01" @default.
- W2097645701 modified "2023-10-16" @default.
- W2097645701 title "10.1162/153244303321897735" @default.
- W2097645701 cites W1492289968 @default.
- W2097645701 cites W1516430151 @default.
- W2097645701 cites W1534477342 @default.
- W2097645701 cites W1546877403 @default.
- W2097645701 cites W1616576116 @default.
- W2097645701 cites W1790954942 @default.
- W2097645701 cites W1820211945 @default.
- W2097645701 cites W1967646346 @default.
- W2097645701 cites W1976604713 @default.
- W2097645701 cites W1980501707 @default.
- W2097645701 cites W1982881121 @default.
- W2097645701 cites W1984283136 @default.
- W2097645701 cites W2004152272 @default.
- W2097645701 cites W2014351296 @default.
- W2097645701 cites W2015125397 @default.
- W2097645701 cites W2037603696 @default.
- W2097645701 cites W2040996609 @default.
- W2097645701 cites W2048679005 @default.
- W2097645701 cites W2070232376 @default.
- W2097645701 cites W2088187868 @default.
- W2097645701 cites W2089923519 @default.
- W2097645701 cites W2099111195 @default.
- W2097645701 cites W2104252183 @default.
- W2097645701 cites W2130851950 @default.
- W2097645701 cites W2139242327 @default.
- W2097645701 cites W2141585940 @default.
- W2097645701 cites W2161455936 @default.
- W2097645701 cites W2180347123 @default.
- W2097645701 cites W2265431425 @default.
- W2097645701 cites W4234892472 @default.
- W2097645701 cites W4237222446 @default.
- W2097645701 cites W4242608849 @default.
- W2097645701 cites W99485931 @default.
- W2097645701 doi "https://doi.org/10.1162/153244303321897735" @default.
- W2097645701 hasPublicationYear "2000" @default.
- W2097645701 type Work @default.
- W2097645701 sameAs 2097645701 @default.
- W2097645701 citedByCount "1694" @default.
- W2097645701 countsByYear W20976457012012 @default.
- W2097645701 countsByYear W20976457012013 @default.
- W2097645701 countsByYear W20976457012014 @default.
- W2097645701 countsByYear W20976457012015 @default.
- W2097645701 countsByYear W20976457012016 @default.
- W2097645701 countsByYear W20976457012017 @default.
- W2097645701 countsByYear W20976457012018 @default.
- W2097645701 countsByYear W20976457012019 @default.
- W2097645701 countsByYear W20976457012020 @default.
- W2097645701 countsByYear W20976457012021 @default.
- W2097645701 countsByYear W20976457012022 @default.
- W2097645701 countsByYear W20976457012023 @default.
- W2097645701 crossrefType "journal-article" @default.
- W2097645701 hasAuthorship W2097645701A5058100924 @default.
- W2097645701 hasAuthorship W2097645701A5085896252 @default.
- W2097645701 hasConcept C41008148 @default.
- W2097645701 hasConceptScore W2097645701C41008148 @default.
- W2097645701 hasLocation W20976457011 @default.
- W2097645701 hasOpenAccess W2097645701 @default.
- W2097645701 hasPrimaryLocation W20976457011 @default.
- W2097645701 hasRelatedWork W2093578348 @default.
- W2097645701 hasRelatedWork W2350741829 @default.
- W2097645701 hasRelatedWork W2358668433 @default.
- W2097645701 hasRelatedWork W2376932109 @default.
- W2097645701 hasRelatedWork W2382290278 @default.
- W2097645701 hasRelatedWork W2390279801 @default.
- W2097645701 hasRelatedWork W2748952813 @default.
- W2097645701 hasRelatedWork W2766271392 @default.
- W2097645701 hasRelatedWork W2899084033 @default.
- W2097645701 hasRelatedWork W3004735627 @default.
- W2097645701 hasVolume "1" @default.
- W2097645701 isParatext "false" @default.
- W2097645701 isRetracted "false" @default.
- W2097645701 magId "2097645701" @default.
- W2097645701 workType "article" @default.