Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097660753> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2097660753 abstract "This paper presents a new EEG-based Brain-Computer Interface (BCI) for on-line controlling the sequence of hand grasping and holding in a virtual reality environment. The goal of this research is to develop an interaction technique that will allow the BCI to be effective in real-world scenarios for hand grasp control. Moreover, for consistency of man-machine interface, it is desirable the intended movement to be what the subject imagines. For this purpose, we developed an on-line BCI which was based on the classification of EEG associated with imagination of the movement of hand grasping and resting state. A classifier based on probabilistic neural network (PNN) was introduced for classifying the EEG. The PNN is a feedforward neural network that realizes the Bayes decision discriminant function by estimating probability density function using mixtures of Gaussian kernels. Two types of classification schemes were considered here for on-line hand control: adaptive and static. In contrast to static classification, the adaptive classifier was continuously updated on-line during recording. The experimental evaluation on six subjects on different days demonstrated that by using the static scheme, a classification accuracy as high as the rate obtained by the adaptive scheme can be achieved. At the best case, an average classification accuracy of 93.0% and 85.8% was obtained using adaptive and static scheme, respectively. The results obtained from more than 1500 trials on six subjects showed that interactive virtual reality environment can be used as an effective tool for subject training in BCI." @default.
- W2097660753 created "2016-06-24" @default.
- W2097660753 creator A5020998781 @default.
- W2097660753 creator A5059312895 @default.
- W2097660753 date "2008-08-01" @default.
- W2097660753 modified "2023-09-24" @default.
- W2097660753 title "An on-line BCI for control of hand grasp sequence and holding using adaptive probabilistic neural network" @default.
- W2097660753 cites W1964168965 @default.
- W2097660753 cites W2009428461 @default.
- W2097660753 cites W2051097876 @default.
- W2097660753 cites W2061965638 @default.
- W2097660753 cites W2068480257 @default.
- W2097660753 cites W2088809939 @default.
- W2097660753 cites W2105526144 @default.
- W2097660753 cites W2109919255 @default.
- W2097660753 cites W2111208616 @default.
- W2097660753 cites W2113019943 @default.
- W2097660753 cites W2117654730 @default.
- W2097660753 cites W2138102363 @default.
- W2097660753 cites W2145482409 @default.
- W2097660753 cites W2152465745 @default.
- W2097660753 cites W2153921087 @default.
- W2097660753 cites W2170968639 @default.
- W2097660753 doi "https://doi.org/10.1109/iembs.2008.4649326" @default.
- W2097660753 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19162829" @default.
- W2097660753 hasPublicationYear "2008" @default.
- W2097660753 type Work @default.
- W2097660753 sameAs 2097660753 @default.
- W2097660753 citedByCount "9" @default.
- W2097660753 countsByYear W20976607532012 @default.
- W2097660753 countsByYear W20976607532013 @default.
- W2097660753 countsByYear W20976607532014 @default.
- W2097660753 countsByYear W20976607532016 @default.
- W2097660753 countsByYear W20976607532017 @default.
- W2097660753 crossrefType "proceedings-article" @default.
- W2097660753 hasAuthorship W2097660753A5020998781 @default.
- W2097660753 hasAuthorship W2097660753A5059312895 @default.
- W2097660753 hasConcept C118552586 @default.
- W2097660753 hasConcept C119857082 @default.
- W2097660753 hasConcept C134342201 @default.
- W2097660753 hasConcept C153180895 @default.
- W2097660753 hasConcept C154945302 @default.
- W2097660753 hasConcept C15744967 @default.
- W2097660753 hasConcept C171268870 @default.
- W2097660753 hasConcept C173201364 @default.
- W2097660753 hasConcept C175202392 @default.
- W2097660753 hasConcept C199360897 @default.
- W2097660753 hasConcept C41008148 @default.
- W2097660753 hasConcept C49937458 @default.
- W2097660753 hasConcept C50644808 @default.
- W2097660753 hasConcept C522805319 @default.
- W2097660753 hasConcept C95623464 @default.
- W2097660753 hasConceptScore W2097660753C118552586 @default.
- W2097660753 hasConceptScore W2097660753C119857082 @default.
- W2097660753 hasConceptScore W2097660753C134342201 @default.
- W2097660753 hasConceptScore W2097660753C153180895 @default.
- W2097660753 hasConceptScore W2097660753C154945302 @default.
- W2097660753 hasConceptScore W2097660753C15744967 @default.
- W2097660753 hasConceptScore W2097660753C171268870 @default.
- W2097660753 hasConceptScore W2097660753C173201364 @default.
- W2097660753 hasConceptScore W2097660753C175202392 @default.
- W2097660753 hasConceptScore W2097660753C199360897 @default.
- W2097660753 hasConceptScore W2097660753C41008148 @default.
- W2097660753 hasConceptScore W2097660753C49937458 @default.
- W2097660753 hasConceptScore W2097660753C50644808 @default.
- W2097660753 hasConceptScore W2097660753C522805319 @default.
- W2097660753 hasConceptScore W2097660753C95623464 @default.
- W2097660753 hasLocation W20976607531 @default.
- W2097660753 hasLocation W20976607532 @default.
- W2097660753 hasOpenAccess W2097660753 @default.
- W2097660753 hasPrimaryLocation W20976607531 @default.
- W2097660753 hasRelatedWork W1975643538 @default.
- W2097660753 hasRelatedWork W2067837718 @default.
- W2097660753 hasRelatedWork W2184993078 @default.
- W2097660753 hasRelatedWork W2236741694 @default.
- W2097660753 hasRelatedWork W2355754418 @default.
- W2097660753 hasRelatedWork W2381770184 @default.
- W2097660753 hasRelatedWork W2544080766 @default.
- W2097660753 hasRelatedWork W2961085424 @default.
- W2097660753 hasRelatedWork W3003598622 @default.
- W2097660753 hasRelatedWork W3022589445 @default.
- W2097660753 isParatext "false" @default.
- W2097660753 isRetracted "false" @default.
- W2097660753 magId "2097660753" @default.
- W2097660753 workType "article" @default.