Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097789406> ?p ?o ?g. }
- W2097789406 endingPage "1430009" @default.
- W2097789406 startingPage "1430009" @default.
- W2097789406 abstract "It is well known that both the symplectic structure and the Poisson brackets of classical field theory can be constructed directly from the Lagrangian in a covariant way, without passing through the non-covariant canonical Hamiltonian formalism. This is true even in the presence of constraints and gauge symmetries. These constructions go under the names of the covariant phase space formalism and the Peierls bracket. We review both of them, paying more careful attention, than usual, to the precise mathematical hypotheses that they require, illustrating them in examples. Also an extensive historical overview of the development of these constructions is provided. The novel aspect of our presentation is a significant expansion and generalization of an elegant and quite recent argument by Forger & Romero showing the equivalence between the resulting symplectic and Poisson structures without passing through the canonical Hamiltonian formalism as an intermediary. We generalize it to cover theories with constraints and gauge symmetries and formulate precise sufficient conditions under which the argument holds. These conditions include a local condition on the equations of motion that we call hyperbolizability, and some global conditions of cohomological nature. The details of our presentation may shed some light on subtle questions related to the Poisson structure of gauge theories and their quantization." @default.
- W2097789406 created "2016-06-24" @default.
- W2097789406 creator A5013195747 @default.
- W2097789406 date "2014-02-18" @default.
- W2097789406 modified "2023-09-26" @default.
- W2097789406 title "Covariant phase space, constraints, gauge and the Peierls formula" @default.
- W2097789406 cites W108257636 @default.
- W2097789406 cites W1504011702 @default.
- W2097789406 cites W1544646035 @default.
- W2097789406 cites W1565577121 @default.
- W2097789406 cites W1600943515 @default.
- W2097789406 cites W1669598283 @default.
- W2097789406 cites W1964300314 @default.
- W2097789406 cites W1966845790 @default.
- W2097789406 cites W1971951217 @default.
- W2097789406 cites W1974391615 @default.
- W2097789406 cites W1975230494 @default.
- W2097789406 cites W1975940492 @default.
- W2097789406 cites W1977875716 @default.
- W2097789406 cites W1984723477 @default.
- W2097789406 cites W1990574014 @default.
- W2097789406 cites W1994477423 @default.
- W2097789406 cites W1995495332 @default.
- W2097789406 cites W1996231599 @default.
- W2097789406 cites W1998203125 @default.
- W2097789406 cites W2000393219 @default.
- W2097789406 cites W2000448299 @default.
- W2097789406 cites W2010021633 @default.
- W2097789406 cites W2011591061 @default.
- W2097789406 cites W2015603277 @default.
- W2097789406 cites W2018594834 @default.
- W2097789406 cites W2022912993 @default.
- W2097789406 cites W2029403139 @default.
- W2097789406 cites W2035793242 @default.
- W2097789406 cites W2038573982 @default.
- W2097789406 cites W2048719531 @default.
- W2097789406 cites W2076364322 @default.
- W2097789406 cites W2076970656 @default.
- W2097789406 cites W2077751495 @default.
- W2097789406 cites W2083364319 @default.
- W2097789406 cites W2085660423 @default.
- W2097789406 cites W2090952208 @default.
- W2097789406 cites W2096765468 @default.
- W2097789406 cites W2100151677 @default.
- W2097789406 cites W2162382988 @default.
- W2097789406 cites W2169706664 @default.
- W2097789406 cites W2200168209 @default.
- W2097789406 cites W2315704123 @default.
- W2097789406 cites W2489381450 @default.
- W2097789406 cites W2951162227 @default.
- W2097789406 cites W3098235898 @default.
- W2097789406 cites W3098840196 @default.
- W2097789406 cites W3099077248 @default.
- W2097789406 cites W3099143743 @default.
- W2097789406 cites W3099358373 @default.
- W2097789406 cites W3099864421 @default.
- W2097789406 cites W3101705403 @default.
- W2097789406 cites W3102609894 @default.
- W2097789406 cites W3105827707 @default.
- W2097789406 cites W3121760766 @default.
- W2097789406 cites W3124794421 @default.
- W2097789406 cites W4205375957 @default.
- W2097789406 cites W4213330757 @default.
- W2097789406 cites W4232970652 @default.
- W2097789406 cites W4234933822 @default.
- W2097789406 cites W4254064530 @default.
- W2097789406 cites W4292170110 @default.
- W2097789406 cites W4300641598 @default.
- W2097789406 cites W628774535 @default.
- W2097789406 cites W648293548 @default.
- W2097789406 cites W71575202 @default.
- W2097789406 doi "https://doi.org/10.1142/s0217751x14300099" @default.
- W2097789406 hasPublicationYear "2014" @default.
- W2097789406 type Work @default.
- W2097789406 sameAs 2097789406 @default.
- W2097789406 citedByCount "34" @default.
- W2097789406 countsByYear W20977894062014 @default.
- W2097789406 countsByYear W20977894062015 @default.
- W2097789406 countsByYear W20977894062016 @default.
- W2097789406 countsByYear W20977894062017 @default.
- W2097789406 countsByYear W20977894062018 @default.
- W2097789406 countsByYear W20977894062019 @default.
- W2097789406 countsByYear W20977894062020 @default.
- W2097789406 countsByYear W20977894062021 @default.
- W2097789406 countsByYear W20977894062022 @default.
- W2097789406 countsByYear W20977894062023 @default.
- W2097789406 crossrefType "journal-article" @default.
- W2097789406 hasAuthorship W2097789406A5013195747 @default.
- W2097789406 hasBestOaLocation W20977894062 @default.
- W2097789406 hasConcept C102650682 @default.
- W2097789406 hasConcept C104367098 @default.
- W2097789406 hasConcept C104586451 @default.
- W2097789406 hasConcept C109798219 @default.
- W2097789406 hasConcept C121332964 @default.
- W2097789406 hasConcept C121770821 @default.
- W2097789406 hasConcept C126255220 @default.
- W2097789406 hasConcept C130190758 @default.
- W2097789406 hasConcept C130787639 @default.