Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097805840> ?p ?o ?g. }
- W2097805840 endingPage "178" @default.
- W2097805840 startingPage "164" @default.
- W2097805840 abstract "Over the last 15 years, basic thresholding techniques in combination with standard statistical correlation-based data analysis tools have been widely used to investigate different aspects of evolution of acute or subacute to late stage ischemic stroke in both human and animal data. Yet, a wave of biology-dependent and imaging-dependent issues is still untackled pointing towards the key question: “how does an ischemic stroke evolve?” Paving the way for potential answers to this question, both magnetic resonance (MRI) and CT (computed tomography) images have been used to visualize the lesion extent, either with or without spatial distinction between dead and salvageable tissue. Combining diffusion and perfusion imaging modalities may provide the possibility of predicting further tissue recovery or eventual necrosis. Going beyond these basic thresholding techniques, in this critical appraisal, we explore different semi-automatic or fully automatic 2D/3D medical image analysis methods and mathematical models applied to human, animal (rats/rodents) and/or synthetic ischemic stroke to tackle one of the following three problems: (1) segmentation of infarcted and/or salvageable (also called penumbral) tissue, (2) prediction of final ischemic tissue fate (death or recovery) and (3) dynamic simulation of the lesion core and/or penumbra evolution. To highlight the key features in the reviewed segmentation and prediction methods, we propose a common categorization pattern. We also emphasize some key aspects of the methods such as the imaging modalities required to build and test the presented approach, the number of patients/animals or synthetic samples, the use of external user interaction and the methods of assessment (clinical or imaging-based). Furthermore, we investigate how any key difficulties, posed by the evolution of stroke such as swelling or reperfusion, were detected (or not) by each method. In the absence of any imaging-based macroscopic dynamic model applied to ischemic stroke, we have insights into relevant microscopic dynamic models simulating the evolution of brain ischemia in the hope to further promising and challenging 4D imaging-based dynamic models. By depicting the major pitfalls and the advanced aspects of the different reviewed methods, we present an overall critique of their performances and concluded our discussion by suggesting some recommendations for future research work focusing on one or more of the three addressed problems." @default.
- W2097805840 created "2016-06-24" @default.
- W2097805840 creator A5004889443 @default.
- W2097805840 creator A5031106777 @default.
- W2097805840 creator A5048784346 @default.
- W2097805840 creator A5061309461 @default.
- W2097805840 date "2012-01-01" @default.
- W2097805840 modified "2023-10-18" @default.
- W2097805840 title "Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal" @default.
- W2097805840 cites W1812081778 @default.
- W2097805840 cites W1886447711 @default.
- W2097805840 cites W1908074189 @default.
- W2097805840 cites W1963968059 @default.
- W2097805840 cites W1968310513 @default.
- W2097805840 cites W1974483939 @default.
- W2097805840 cites W1975818024 @default.
- W2097805840 cites W1976465328 @default.
- W2097805840 cites W1977388060 @default.
- W2097805840 cites W1977877018 @default.
- W2097805840 cites W1978661753 @default.
- W2097805840 cites W1979538182 @default.
- W2097805840 cites W1981121688 @default.
- W2097805840 cites W1988720618 @default.
- W2097805840 cites W1990049836 @default.
- W2097805840 cites W1991134549 @default.
- W2097805840 cites W1992638640 @default.
- W2097805840 cites W1995009051 @default.
- W2097805840 cites W1998690900 @default.
- W2097805840 cites W1998832340 @default.
- W2097805840 cites W2004848411 @default.
- W2097805840 cites W2006440647 @default.
- W2097805840 cites W2009049939 @default.
- W2097805840 cites W2017610706 @default.
- W2097805840 cites W2018636616 @default.
- W2097805840 cites W2020484901 @default.
- W2097805840 cites W2022821097 @default.
- W2097805840 cites W2025378925 @default.
- W2097805840 cites W2032226537 @default.
- W2097805840 cites W2034177194 @default.
- W2097805840 cites W2036653122 @default.
- W2097805840 cites W2039295930 @default.
- W2097805840 cites W2041645861 @default.
- W2097805840 cites W2044917658 @default.
- W2097805840 cites W2045292398 @default.
- W2097805840 cites W2047791068 @default.
- W2097805840 cites W2053513729 @default.
- W2097805840 cites W2055768309 @default.
- W2097805840 cites W2063098990 @default.
- W2097805840 cites W2063399177 @default.
- W2097805840 cites W2076025368 @default.
- W2097805840 cites W2079239744 @default.
- W2097805840 cites W2085753368 @default.
- W2097805840 cites W2086121111 @default.
- W2097805840 cites W2092854526 @default.
- W2097805840 cites W2093728612 @default.
- W2097805840 cites W2096451728 @default.
- W2097805840 cites W2097032875 @default.
- W2097805840 cites W2100527641 @default.
- W2097805840 cites W2112312953 @default.
- W2097805840 cites W2113366434 @default.
- W2097805840 cites W2118386984 @default.
- W2097805840 cites W2118787037 @default.
- W2097805840 cites W2119214090 @default.
- W2097805840 cites W2123351961 @default.
- W2097805840 cites W2126266657 @default.
- W2097805840 cites W2126719211 @default.
- W2097805840 cites W2129736986 @default.
- W2097805840 cites W2129841144 @default.
- W2097805840 cites W2133806968 @default.
- W2097805840 cites W2135043868 @default.
- W2097805840 cites W2138566597 @default.
- W2097805840 cites W2147106681 @default.
- W2097805840 cites W2148016499 @default.
- W2097805840 cites W2151430135 @default.
- W2097805840 cites W2155684087 @default.
- W2097805840 cites W2155737242 @default.
- W2097805840 cites W2156896333 @default.
- W2097805840 cites W2157135059 @default.
- W2097805840 cites W2164494555 @default.
- W2097805840 cites W2166805329 @default.
- W2097805840 cites W2167534567 @default.
- W2097805840 cites W2170597858 @default.
- W2097805840 cites W2171272565 @default.
- W2097805840 cites W2413703661 @default.
- W2097805840 cites W28878547 @default.
- W2097805840 cites W2928618355 @default.
- W2097805840 cites W4241822602 @default.
- W2097805840 doi "https://doi.org/10.1016/j.nicl.2012.10.003" @default.
- W2097805840 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3757728" @default.
- W2097805840 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24179749" @default.
- W2097805840 hasPublicationYear "2012" @default.
- W2097805840 type Work @default.
- W2097805840 sameAs 2097805840 @default.
- W2097805840 citedByCount "115" @default.
- W2097805840 countsByYear W20978058402013 @default.
- W2097805840 countsByYear W20978058402014 @default.
- W2097805840 countsByYear W20978058402015 @default.
- W2097805840 countsByYear W20978058402016 @default.