Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097819904> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2097819904 endingPage "318" @default.
- W2097819904 startingPage "318" @default.
- W2097819904 abstract "Abstract A great many studies on wave breaking have been carried out, and much experimental and field data have been documented. Moreover, on the basis of various data sets, many empirical formulas based primarily on regression analysis have been proposed to quantitatively estimate wave breaking for engineering applications. However, wave breaking has an inherent variability, which suggests that a linear statistical approach such as regression analysis might be inadequate. This study presents an alternative nonlinear method using an artificial neural network (ANN), one of the soft computing methods, for predicting breaking-wave heights and water depths. Using data from laboratory experiments showing that wave breaking characteristics on a gravel beach are different from those on a sandy beach, we developed a three-layered feed-forward type of network to obtain the output of wave-breaking heights and water depths using deepwater heights, wave periods, and seabed conditions as inputs. In particular, the eff..." @default.
- W2097819904 created "2016-06-24" @default.
- W2097819904 creator A5024193161 @default.
- W2097819904 creator A5055835358 @default.
- W2097819904 creator A5084786202 @default.
- W2097819904 date "2011-03-01" @default.
- W2097819904 modified "2023-10-17" @default.
- W2097819904 title "Prediction of Wave Breaking on a Gravel Beach by an Artificial Neural Network" @default.
- W2097819904 cites W1971812110 @default.
- W2097819904 cites W1979590044 @default.
- W2097819904 cites W1980047932 @default.
- W2097819904 cites W1988071900 @default.
- W2097819904 cites W1992445046 @default.
- W2097819904 cites W1992674248 @default.
- W2097819904 cites W2008756391 @default.
- W2097819904 cites W2025943746 @default.
- W2097819904 cites W2028412505 @default.
- W2097819904 cites W2038724862 @default.
- W2097819904 cites W2038781693 @default.
- W2097819904 cites W2048772482 @default.
- W2097819904 cites W2071942969 @default.
- W2097819904 cites W2081324420 @default.
- W2097819904 cites W2082352675 @default.
- W2097819904 cites W2095595785 @default.
- W2097819904 cites W2103214212 @default.
- W2097819904 cites W2104300404 @default.
- W2097819904 cites W2109516513 @default.
- W2097819904 cites W2145027153 @default.
- W2097819904 cites W2151483290 @default.
- W2097819904 cites W2155890427 @default.
- W2097819904 cites W2165228453 @default.
- W2097819904 cites W2169046426 @default.
- W2097819904 cites W2319796845 @default.
- W2097819904 doi "https://doi.org/10.2112/jcoastres-d-10-00094.1" @default.
- W2097819904 hasPublicationYear "2011" @default.
- W2097819904 type Work @default.
- W2097819904 sameAs 2097819904 @default.
- W2097819904 citedByCount "2" @default.
- W2097819904 countsByYear W20978199042018 @default.
- W2097819904 countsByYear W20978199042022 @default.
- W2097819904 crossrefType "journal-article" @default.
- W2097819904 hasAuthorship W2097819904A5024193161 @default.
- W2097819904 hasAuthorship W2097819904A5055835358 @default.
- W2097819904 hasAuthorship W2097819904A5084786202 @default.
- W2097819904 hasConcept C111368507 @default.
- W2097819904 hasConcept C121332964 @default.
- W2097819904 hasConcept C127313418 @default.
- W2097819904 hasConcept C139146106 @default.
- W2097819904 hasConcept C152382732 @default.
- W2097819904 hasConcept C154945302 @default.
- W2097819904 hasConcept C169596890 @default.
- W2097819904 hasConcept C187320778 @default.
- W2097819904 hasConcept C39432304 @default.
- W2097819904 hasConcept C41008148 @default.
- W2097819904 hasConcept C44886760 @default.
- W2097819904 hasConcept C50644808 @default.
- W2097819904 hasConcept C62520636 @default.
- W2097819904 hasConcept C76886044 @default.
- W2097819904 hasConceptScore W2097819904C111368507 @default.
- W2097819904 hasConceptScore W2097819904C121332964 @default.
- W2097819904 hasConceptScore W2097819904C127313418 @default.
- W2097819904 hasConceptScore W2097819904C139146106 @default.
- W2097819904 hasConceptScore W2097819904C152382732 @default.
- W2097819904 hasConceptScore W2097819904C154945302 @default.
- W2097819904 hasConceptScore W2097819904C169596890 @default.
- W2097819904 hasConceptScore W2097819904C187320778 @default.
- W2097819904 hasConceptScore W2097819904C39432304 @default.
- W2097819904 hasConceptScore W2097819904C41008148 @default.
- W2097819904 hasConceptScore W2097819904C44886760 @default.
- W2097819904 hasConceptScore W2097819904C50644808 @default.
- W2097819904 hasConceptScore W2097819904C62520636 @default.
- W2097819904 hasConceptScore W2097819904C76886044 @default.
- W2097819904 hasIssue "2" @default.
- W2097819904 hasLocation W20978199041 @default.
- W2097819904 hasOpenAccess W2097819904 @default.
- W2097819904 hasPrimaryLocation W20978199041 @default.
- W2097819904 hasRelatedWork W1975206529 @default.
- W2097819904 hasRelatedWork W2000367265 @default.
- W2097819904 hasRelatedWork W2003836542 @default.
- W2097819904 hasRelatedWork W2314655143 @default.
- W2097819904 hasRelatedWork W2359082537 @default.
- W2097819904 hasRelatedWork W2376897384 @default.
- W2097819904 hasRelatedWork W2384860961 @default.
- W2097819904 hasRelatedWork W2391074946 @default.
- W2097819904 hasRelatedWork W2392512544 @default.
- W2097819904 hasRelatedWork W599830596 @default.
- W2097819904 hasVolume "27" @default.
- W2097819904 isParatext "false" @default.
- W2097819904 isRetracted "false" @default.
- W2097819904 magId "2097819904" @default.
- W2097819904 workType "article" @default.