Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097930757> ?p ?o ?g. }
- W2097930757 endingPage "106" @default.
- W2097930757 startingPage "93" @default.
- W2097930757 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 296:93-106 (2005) - doi:10.3354/meps296093 Larval transport pathways from Cuban snapper (Lutjanidae) spawning aggregations based on biophysical modeling Claire B. Paris1,*, Robert K. Cowen1, Rodolfo Claro2, Kenyon C. Lindeman3 1Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149-1098, USA2Instituto de Oceanología, Centro de Innovacíon Tecnológica del Medio Ambiente, Ave. 1ra No. 18406, Playa, La Habana, Cuba3Environmental Defense, 485 Glenwood Ave., Satellite Beach, Florida 32937, USA *Email: cparis@rsmas.miami.edu ABSTRACT: The potential linkages among Cuba and geographically associated northwestern Caribbean locations were examined through simulated transport of snapper larvae for 5 harvested snapper species. The analyses are based on a coupled biophysical model incorporating realistic, intra-annual varying currents from a single year (1984), a Lagrangian stochastic scheme, and larval behaviors to find settlement habitat. Sequential runs centered on peak spawning months and lunar phases estimated the degree to which each spawning event contributes larvae to distant populations or to neighboring populations on the complex Cuban shelf. Results suggest that considerable levels of self-recruitment (ca. 37 to 80% total recruitment) structure Cuban snapper populations, in particular, those from the southern and north-central regions. The northern snapper populations exported larvae to the southern Bahamas, specifically to Cay Sal Bank (ca. 11 to 28% total recruitment), while, for more distant locations, the import of larvae from Cuba was negligible depending on the species. Regional oceanographic regimes for cubera, dog and gray snappers and site utilization (e.g. shelf geomorphology) for mutton snapper caused most within-species recruitment variability. However, a small lag in peak spawning times contributed significantly to high recruitment variability among species. Active virtual larvae stand a better chance of reaching settlement habitat, whereas spatial distribution of recruitment is similar but less structured (i.e. homogeneous low abundance) for passive larvae. This modeling approach produces spatio-temporal predictions of larval pathways with explicit measures of variance. Further, it allows for the quantification of relative levels of connectivity, a component needed in the design of marine reserve networks. KEY WORDS: Spawning aggregations · Larval transport · Recruitment · Biophysical modeling · Connectivity · Marine reserve network · Lutjanidae · Cuba Full text in pdf format PreviousNextExport citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 296. Online publication date: July 12, 2005 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2005 Inter-Research." @default.
- W2097930757 created "2016-06-24" @default.
- W2097930757 creator A5003888284 @default.
- W2097930757 creator A5003903037 @default.
- W2097930757 creator A5014229882 @default.
- W2097930757 creator A5075261460 @default.
- W2097930757 date "2005-01-01" @default.
- W2097930757 modified "2023-09-25" @default.
- W2097930757 title "Larval transport pathways from Cuban snapper (Lutjanidae) spawning aggregations based on biophysical modeling" @default.
- W2097930757 cites W104492319 @default.
- W2097930757 cites W1226807576 @default.
- W2097930757 cites W1504653458 @default.
- W2097930757 cites W1539063480 @default.
- W2097930757 cites W1546962148 @default.
- W2097930757 cites W162646109 @default.
- W2097930757 cites W1665508016 @default.
- W2097930757 cites W1814042371 @default.
- W2097930757 cites W1829276247 @default.
- W2097930757 cites W1973258457 @default.
- W2097930757 cites W1977061297 @default.
- W2097930757 cites W199827607 @default.
- W2097930757 cites W200129271 @default.
- W2097930757 cites W2028232676 @default.
- W2097930757 cites W2063017655 @default.
- W2097930757 cites W2073306971 @default.
- W2097930757 cites W2097894081 @default.
- W2097930757 cites W2099270049 @default.
- W2097930757 cites W2103110145 @default.
- W2097930757 cites W2121378828 @default.
- W2097930757 cites W2125716922 @default.
- W2097930757 cites W2126629965 @default.
- W2097930757 cites W2131872432 @default.
- W2097930757 cites W2150850312 @default.
- W2097930757 cites W2156396688 @default.
- W2097930757 cites W2158366272 @default.
- W2097930757 cites W2183774502 @default.
- W2097930757 cites W228946607 @default.
- W2097930757 cites W2320023904 @default.
- W2097930757 cites W2336832791 @default.
- W2097930757 cites W2409985049 @default.
- W2097930757 cites W2502586528 @default.
- W2097930757 cites W2608799023 @default.
- W2097930757 cites W2908876502 @default.
- W2097930757 cites W330405381 @default.
- W2097930757 cites W2185681858 @default.
- W2097930757 cites W2480548539 @default.
- W2097930757 cites W2496825347 @default.
- W2097930757 cites W2509501094 @default.
- W2097930757 cites W2523614117 @default.
- W2097930757 cites W2612012466 @default.
- W2097930757 cites W2755132558 @default.
- W2097930757 doi "https://doi.org/10.3354/meps296093" @default.
- W2097930757 hasPublicationYear "2005" @default.
- W2097930757 type Work @default.
- W2097930757 sameAs 2097930757 @default.
- W2097930757 citedByCount "133" @default.
- W2097930757 countsByYear W20979307572012 @default.
- W2097930757 countsByYear W20979307572013 @default.
- W2097930757 countsByYear W20979307572014 @default.
- W2097930757 countsByYear W20979307572015 @default.
- W2097930757 countsByYear W20979307572016 @default.
- W2097930757 countsByYear W20979307572017 @default.
- W2097930757 countsByYear W20979307572018 @default.
- W2097930757 countsByYear W20979307572019 @default.
- W2097930757 countsByYear W20979307572020 @default.
- W2097930757 countsByYear W20979307572021 @default.
- W2097930757 countsByYear W20979307572022 @default.
- W2097930757 countsByYear W20979307572023 @default.
- W2097930757 crossrefType "journal-article" @default.
- W2097930757 hasAuthorship W2097930757A5003888284 @default.
- W2097930757 hasAuthorship W2097930757A5003903037 @default.
- W2097930757 hasAuthorship W2097930757A5014229882 @default.
- W2097930757 hasAuthorship W2097930757A5075261460 @default.
- W2097930757 hasBestOaLocation W20979307571 @default.
- W2097930757 hasConcept C111368507 @default.
- W2097930757 hasConcept C127313418 @default.
- W2097930757 hasConcept C159390177 @default.
- W2097930757 hasConcept C173758957 @default.
- W2097930757 hasConcept C185933670 @default.
- W2097930757 hasConcept C18903297 @default.
- W2097930757 hasConcept C19269858 @default.
- W2097930757 hasConcept C205649164 @default.
- W2097930757 hasConcept C207769581 @default.
- W2097930757 hasConcept C2606647 @default.
- W2097930757 hasConcept C2780820263 @default.
- W2097930757 hasConcept C2909208804 @default.
- W2097930757 hasConcept C39432304 @default.
- W2097930757 hasConcept C505870484 @default.
- W2097930757 hasConcept C514101110 @default.
- W2097930757 hasConcept C86803240 @default.
- W2097930757 hasConceptScore W2097930757C111368507 @default.
- W2097930757 hasConceptScore W2097930757C127313418 @default.
- W2097930757 hasConceptScore W2097930757C159390177 @default.
- W2097930757 hasConceptScore W2097930757C173758957 @default.
- W2097930757 hasConceptScore W2097930757C185933670 @default.
- W2097930757 hasConceptScore W2097930757C18903297 @default.
- W2097930757 hasConceptScore W2097930757C19269858 @default.
- W2097930757 hasConceptScore W2097930757C205649164 @default.