Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098112997> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2098112997 abstract "Learning conditional probability tables of large Bayesian Networks (BNs) with hidden nodes using the Expectation Maximization algorithm is heavily computationally intensive. There are at least two bottlenecks, namely the potentially huge data set size and the requirement for computation and memory resources. This work applies the distributed computing framework MapReduce to Bayesian parameter learning from complete and incomplete data. We formulate both traditional parameter learning (complete data) and the classical Expectation Maximization algorithm (incomplete data) within the MapReduce framework. Analytically and experimentally we analyze the speed-up that can be obtained by means of MapReduce. We present the details of our Hadoop implementation, report speed-ups versus the sequential case, and compare various Hadoop configurations for experiments with Bayesian networks of different sizes and structures. For Bayesian networks with large junction trees, we surprisingly find that MapReduce can give a speed-up compared to the sequential Expectation Maximization algorithm for learning from 20 cases or fewer. The benefit of MapReduce for learning various Bayesian networks is investigated on data sets with up to 1,000,000 records." @default.
- W2098112997 created "2016-06-24" @default.
- W2098112997 creator A5009341608 @default.
- W2098112997 creator A5024463019 @default.
- W2098112997 creator A5035278631 @default.
- W2098112997 creator A5049041212 @default.
- W2098112997 date "2012-08-12" @default.
- W2098112997 modified "2023-09-23" @default.
- W2098112997 title "Accelerating Bayesian network parameter learning using Hadoop and MapReduce" @default.
- W2098112997 cites W1593793857 @default.
- W2098112997 cites W1669437150 @default.
- W2098112997 cites W1989926363 @default.
- W2098112997 cites W2020600455 @default.
- W2098112997 cites W2049633694 @default.
- W2098112997 cites W2137089205 @default.
- W2098112997 cites W2173213060 @default.
- W2098112997 doi "https://doi.org/10.1145/2351316.2351330" @default.
- W2098112997 hasPublicationYear "2012" @default.
- W2098112997 type Work @default.
- W2098112997 sameAs 2098112997 @default.
- W2098112997 citedByCount "28" @default.
- W2098112997 countsByYear W20981129972012 @default.
- W2098112997 countsByYear W20981129972013 @default.
- W2098112997 countsByYear W20981129972014 @default.
- W2098112997 countsByYear W20981129972015 @default.
- W2098112997 countsByYear W20981129972016 @default.
- W2098112997 countsByYear W20981129972017 @default.
- W2098112997 countsByYear W20981129972018 @default.
- W2098112997 countsByYear W20981129972019 @default.
- W2098112997 countsByYear W20981129972020 @default.
- W2098112997 countsByYear W20981129972021 @default.
- W2098112997 crossrefType "proceedings-article" @default.
- W2098112997 hasAuthorship W2098112997A5009341608 @default.
- W2098112997 hasAuthorship W2098112997A5024463019 @default.
- W2098112997 hasAuthorship W2098112997A5035278631 @default.
- W2098112997 hasAuthorship W2098112997A5049041212 @default.
- W2098112997 hasBestOaLocation W20981129972 @default.
- W2098112997 hasConcept C105795698 @default.
- W2098112997 hasConcept C107673813 @default.
- W2098112997 hasConcept C11413529 @default.
- W2098112997 hasConcept C119857082 @default.
- W2098112997 hasConcept C124101348 @default.
- W2098112997 hasConcept C126255220 @default.
- W2098112997 hasConcept C154945302 @default.
- W2098112997 hasConcept C177264268 @default.
- W2098112997 hasConcept C182081679 @default.
- W2098112997 hasConcept C199360897 @default.
- W2098112997 hasConcept C2776330181 @default.
- W2098112997 hasConcept C2778049539 @default.
- W2098112997 hasConcept C33724603 @default.
- W2098112997 hasConcept C33923547 @default.
- W2098112997 hasConcept C41008148 @default.
- W2098112997 hasConcept C45374587 @default.
- W2098112997 hasConcept C49781872 @default.
- W2098112997 hasConcept C75684735 @default.
- W2098112997 hasConceptScore W2098112997C105795698 @default.
- W2098112997 hasConceptScore W2098112997C107673813 @default.
- W2098112997 hasConceptScore W2098112997C11413529 @default.
- W2098112997 hasConceptScore W2098112997C119857082 @default.
- W2098112997 hasConceptScore W2098112997C124101348 @default.
- W2098112997 hasConceptScore W2098112997C126255220 @default.
- W2098112997 hasConceptScore W2098112997C154945302 @default.
- W2098112997 hasConceptScore W2098112997C177264268 @default.
- W2098112997 hasConceptScore W2098112997C182081679 @default.
- W2098112997 hasConceptScore W2098112997C199360897 @default.
- W2098112997 hasConceptScore W2098112997C2776330181 @default.
- W2098112997 hasConceptScore W2098112997C2778049539 @default.
- W2098112997 hasConceptScore W2098112997C33724603 @default.
- W2098112997 hasConceptScore W2098112997C33923547 @default.
- W2098112997 hasConceptScore W2098112997C41008148 @default.
- W2098112997 hasConceptScore W2098112997C45374587 @default.
- W2098112997 hasConceptScore W2098112997C49781872 @default.
- W2098112997 hasConceptScore W2098112997C75684735 @default.
- W2098112997 hasLocation W20981129971 @default.
- W2098112997 hasLocation W20981129972 @default.
- W2098112997 hasOpenAccess W2098112997 @default.
- W2098112997 hasPrimaryLocation W20981129971 @default.
- W2098112997 hasRelatedWork W1535019556 @default.
- W2098112997 hasRelatedWork W2734587838 @default.
- W2098112997 hasRelatedWork W2949274245 @default.
- W2098112997 hasRelatedWork W3014300295 @default.
- W2098112997 hasRelatedWork W3154094704 @default.
- W2098112997 hasRelatedWork W3158877728 @default.
- W2098112997 hasRelatedWork W3189515467 @default.
- W2098112997 hasRelatedWork W3199608561 @default.
- W2098112997 hasRelatedWork W4293567684 @default.
- W2098112997 hasRelatedWork W4301965207 @default.
- W2098112997 isParatext "false" @default.
- W2098112997 isRetracted "false" @default.
- W2098112997 magId "2098112997" @default.
- W2098112997 workType "article" @default.