Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098174978> ?p ?o ?g. }
- W2098174978 endingPage "1115" @default.
- W2098174978 startingPage "1098" @default.
- W2098174978 abstract "In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one's training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios." @default.
- W2098174978 created "2016-06-24" @default.
- W2098174978 creator A5008011147 @default.
- W2098174978 creator A5012935165 @default.
- W2098174978 creator A5014124403 @default.
- W2098174978 creator A5070821128 @default.
- W2098174978 date "2011-06-01" @default.
- W2098174978 modified "2023-10-17" @default.
- W2098174978 title "A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation" @default.
- W2098174978 cites W1499894287 @default.
- W2098174978 cites W1510541640 @default.
- W2098174978 cites W1982463960 @default.
- W2098174978 cites W1987579928 @default.
- W2098174978 cites W1988186395 @default.
- W2098174978 cites W2006178360 @default.
- W2098174978 cites W2014158063 @default.
- W2098174978 cites W2027548828 @default.
- W2098174978 cites W2044562173 @default.
- W2098174978 cites W2049981393 @default.
- W2098174978 cites W2052760187 @default.
- W2098174978 cites W2071254771 @default.
- W2098174978 cites W2079690285 @default.
- W2098174978 cites W2089210869 @default.
- W2098174978 cites W2097324202 @default.
- W2098174978 cites W2104358837 @default.
- W2098174978 cites W2112189985 @default.
- W2098174978 cites W2112556758 @default.
- W2098174978 cites W2112601264 @default.
- W2098174978 cites W2116040950 @default.
- W2098174978 cites W2116786379 @default.
- W2098174978 cites W2118932535 @default.
- W2098174978 cites W2120309042 @default.
- W2098174978 cites W2120938053 @default.
- W2098174978 cites W2128491350 @default.
- W2098174978 cites W2133396101 @default.
- W2098174978 cites W2134237713 @default.
- W2098174978 cites W2134484928 @default.
- W2098174978 cites W2135660601 @default.
- W2098174978 cites W2147484997 @default.
- W2098174978 cites W2153326665 @default.
- W2098174978 cites W2167338900 @default.
- W2098174978 cites W2168449611 @default.
- W2098174978 cites W2237250383 @default.
- W2098174978 cites W2913225681 @default.
- W2098174978 cites W3022396642 @default.
- W2098174978 cites W3211330693 @default.
- W2098174978 doi "https://doi.org/10.1109/tpami.2010.162" @default.
- W2098174978 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3655730" @default.
- W2098174978 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20733218" @default.
- W2098174978 hasPublicationYear "2011" @default.
- W2098174978 type Work @default.
- W2098174978 sameAs 2098174978 @default.
- W2098174978 citedByCount "23" @default.
- W2098174978 countsByYear W20981749782012 @default.
- W2098174978 countsByYear W20981749782013 @default.
- W2098174978 countsByYear W20981749782014 @default.
- W2098174978 countsByYear W20981749782015 @default.
- W2098174978 countsByYear W20981749782016 @default.
- W2098174978 countsByYear W20981749782017 @default.
- W2098174978 countsByYear W20981749782018 @default.
- W2098174978 countsByYear W20981749782019 @default.
- W2098174978 countsByYear W20981749782020 @default.
- W2098174978 countsByYear W20981749782021 @default.
- W2098174978 countsByYear W20981749782022 @default.
- W2098174978 crossrefType "journal-article" @default.
- W2098174978 hasAuthorship W2098174978A5008011147 @default.
- W2098174978 hasAuthorship W2098174978A5012935165 @default.
- W2098174978 hasAuthorship W2098174978A5014124403 @default.
- W2098174978 hasAuthorship W2098174978A5070821128 @default.
- W2098174978 hasBestOaLocation W20981749782 @default.
- W2098174978 hasConcept C105795698 @default.
- W2098174978 hasConcept C114614502 @default.
- W2098174978 hasConcept C124504099 @default.
- W2098174978 hasConcept C127413603 @default.
- W2098174978 hasConcept C153180895 @default.
- W2098174978 hasConcept C154945302 @default.
- W2098174978 hasConcept C185429906 @default.
- W2098174978 hasConcept C31972630 @default.
- W2098174978 hasConcept C33923547 @default.
- W2098174978 hasConcept C36613465 @default.
- W2098174978 hasConcept C41008148 @default.
- W2098174978 hasConcept C52102323 @default.
- W2098174978 hasConcept C529865628 @default.
- W2098174978 hasConcept C71134354 @default.
- W2098174978 hasConcept C74193536 @default.
- W2098174978 hasConcept C78519656 @default.
- W2098174978 hasConcept C89600930 @default.
- W2098174978 hasConceptScore W2098174978C105795698 @default.
- W2098174978 hasConceptScore W2098174978C114614502 @default.
- W2098174978 hasConceptScore W2098174978C124504099 @default.
- W2098174978 hasConceptScore W2098174978C127413603 @default.
- W2098174978 hasConceptScore W2098174978C153180895 @default.
- W2098174978 hasConceptScore W2098174978C154945302 @default.
- W2098174978 hasConceptScore W2098174978C185429906 @default.
- W2098174978 hasConceptScore W2098174978C31972630 @default.
- W2098174978 hasConceptScore W2098174978C33923547 @default.
- W2098174978 hasConceptScore W2098174978C36613465 @default.
- W2098174978 hasConceptScore W2098174978C41008148 @default.