Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098214922> ?p ?o ?g. }
- W2098214922 abstract "ABSTRACT NF-κB plays a critical role in the induction and maintenance of innate and adaptive immune transcriptional programs. An associated inhibitor of κB protein (IκB) regulates NF-κB activation and contains a degron motif (DSGΦxS) that undergoes phosphorylation following pathogen recognition or other proinflammatory signals. The E3 ubiquitin ligase SCF β-TrCP recognizes this phosphodegron through its β-transducin repeat-containing protein (β-TrCP) subunit and induces IκB degradation, allowing NF-κB to translocate to the nucleus and modulate gene expression. Rotavirus (RV), a major cause of pediatric gastroenteritis, can block NF-κB activation through the action of its nonstructural protein NSP1, a putative E3 ubiquitin ligase that mediates the degradation of β-TrCP or other immunomodulatory proteins in a virus strain-specific manner. Here, we show that NSP1 targets β-TrCP by mimicking the IκB phosphodegron. The NSP1 proteins of most human and porcine RV strains conserve a C-terminal phosphodegron-like (PDL) motif, DSGΦS. Deletion of this motif or mutation of its serine residues disrupts NSP1-mediated degradation of β-TrCP and inhibition of NF-κB activation. Additionally, a point mutation within the phosphodegron-binding pocket protects β-TrCP from NSP1-mediated turnover. Fusion of the PDL motif to an NSP1 protein known to target other immunomodulatory proteins generates a chimeric NSP1 protein that can induce β-TrCP degradation and block NF-κB activation. Other viral proteins (Epstein-Barr virus LMP1, HIV-1 Vpu, and vaccinia virus A49) also contain a PDL motif and interact with β-TrCP to inhibit NF-κB activation. Taken together, these data suggest that targeting β-TrCP by molecular mimicry may be a common strategy used by human viruses to evade the host immune response. IMPORTANCE The transcription factor NF-κB, a central regulator of the host response to infection, is a frequent target of viral antagonism. Pathogen detection activates NF-κB by inducing the phosphorylation of an associated inhibitor protein (IκB), which targets IκB for degradation by the E3 ubiquitin ligase β-TrCP. Rotavirus, a significant cause of childhood gastroenteritis, antagonizes NF-κB through the activity of its NSP1 protein, a putative E3 ubiquitin ligase that mediates β-TrCP turnover. Here, we show that NSP1 functions by mimicking the IκB phosphodegron recognized by β-TrCP. Nearly all human rotavirus strains conserve this motif at the NSP1 C terminus, and its removal disrupts NSP1 antagonist activity. This sequence conserves the biochemical properties of the IκB phosphodegron and can rescue antagonist activity when fused to an NSP1 protein otherwise inactive against β-TrCP. Other viral proteins also mimic IκB to disrupt NF-κB activation, indicating that this is an important immune evasion strategy." @default.
- W2098214922 created "2016-06-24" @default.
- W2098214922 creator A5007690571 @default.
- W2098214922 creator A5011911098 @default.
- W2098214922 creator A5037376771 @default.
- W2098214922 date "2015-02-27" @default.
- W2098214922 modified "2023-10-16" @default.
- W2098214922 title "Putative E3 Ubiquitin Ligase of Human Rotavirus Inhibits NF-κB Activation by Using Molecular Mimicry To Target β-TrCP" @default.
- W2098214922 cites W1522082152 @default.
- W2098214922 cites W1604315363 @default.
- W2098214922 cites W1866820856 @default.
- W2098214922 cites W1960809236 @default.
- W2098214922 cites W1964370299 @default.
- W2098214922 cites W1982635910 @default.
- W2098214922 cites W1986096299 @default.
- W2098214922 cites W1986384364 @default.
- W2098214922 cites W1988031203 @default.
- W2098214922 cites W1989344251 @default.
- W2098214922 cites W1996423252 @default.
- W2098214922 cites W1997477860 @default.
- W2098214922 cites W1999272522 @default.
- W2098214922 cites W2016496481 @default.
- W2098214922 cites W2020235979 @default.
- W2098214922 cites W2020445888 @default.
- W2098214922 cites W2027244390 @default.
- W2098214922 cites W2027522108 @default.
- W2098214922 cites W2038053000 @default.
- W2098214922 cites W2038643624 @default.
- W2098214922 cites W2042433863 @default.
- W2098214922 cites W2048162805 @default.
- W2098214922 cites W2051580617 @default.
- W2098214922 cites W2058015620 @default.
- W2098214922 cites W2060610804 @default.
- W2098214922 cites W2063310200 @default.
- W2098214922 cites W2064309870 @default.
- W2098214922 cites W2068824485 @default.
- W2098214922 cites W2069488807 @default.
- W2098214922 cites W2070096236 @default.
- W2098214922 cites W2080159885 @default.
- W2098214922 cites W2091006367 @default.
- W2098214922 cites W2098904309 @default.
- W2098214922 cites W2100876902 @default.
- W2098214922 cites W2102683798 @default.
- W2098214922 cites W2115195989 @default.
- W2098214922 cites W2117077088 @default.
- W2098214922 cites W2123913956 @default.
- W2098214922 cites W2127847431 @default.
- W2098214922 cites W2129783463 @default.
- W2098214922 cites W2129881449 @default.
- W2098214922 cites W2131154800 @default.
- W2098214922 cites W2131615204 @default.
- W2098214922 cites W2132570074 @default.
- W2098214922 cites W2132632499 @default.
- W2098214922 cites W2132673364 @default.
- W2098214922 cites W2136535932 @default.
- W2098214922 cites W2138934663 @default.
- W2098214922 cites W2144391471 @default.
- W2098214922 cites W2145494049 @default.
- W2098214922 cites W2145990658 @default.
- W2098214922 cites W2146687356 @default.
- W2098214922 cites W2147291971 @default.
- W2098214922 cites W2147427058 @default.
- W2098214922 cites W2151602856 @default.
- W2098214922 cites W2152106572 @default.
- W2098214922 cites W2160063406 @default.
- W2098214922 cites W2164913825 @default.
- W2098214922 cites W2168687405 @default.
- W2098214922 cites W2169076520 @default.
- W2098214922 cites W2170678561 @default.
- W2098214922 cites W2762075333 @default.
- W2098214922 cites W4211010581 @default.
- W2098214922 cites W4235848672 @default.
- W2098214922 doi "https://doi.org/10.1128/mbio.02490-14" @default.
- W2098214922 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4324316" @default.
- W2098214922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25626907" @default.
- W2098214922 hasPublicationYear "2015" @default.
- W2098214922 type Work @default.
- W2098214922 sameAs 2098214922 @default.
- W2098214922 citedByCount "52" @default.
- W2098214922 countsByYear W20982149222015 @default.
- W2098214922 countsByYear W20982149222016 @default.
- W2098214922 countsByYear W20982149222017 @default.
- W2098214922 countsByYear W20982149222018 @default.
- W2098214922 countsByYear W20982149222019 @default.
- W2098214922 countsByYear W20982149222020 @default.
- W2098214922 countsByYear W20982149222021 @default.
- W2098214922 countsByYear W20982149222022 @default.
- W2098214922 countsByYear W20982149222023 @default.
- W2098214922 crossrefType "journal-article" @default.
- W2098214922 hasAuthorship W2098214922A5007690571 @default.
- W2098214922 hasAuthorship W2098214922A5011911098 @default.
- W2098214922 hasAuthorship W2098214922A5037376771 @default.
- W2098214922 hasBestOaLocation W20982149221 @default.
- W2098214922 hasConcept C104317684 @default.
- W2098214922 hasConcept C123894998 @default.
- W2098214922 hasConcept C134459356 @default.
- W2098214922 hasConcept C159047783 @default.
- W2098214922 hasConcept C185592680 @default.
- W2098214922 hasConcept C2522874641 @default.
- W2098214922 hasConcept C25602115 @default.