Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098408481> ?p ?o ?g. }
- W2098408481 endingPage "e6393" @default.
- W2098408481 startingPage "e6393" @default.
- W2098408481 abstract "To reduce the increasing amount of time spent on literature search in the life sciences, several methods for automated knowledge extraction have been developed. Co-occurrence based approaches can deal with large text corpora like MEDLINE in an acceptable time but are not able to extract any specific type of semantic relation. Semantic relation extraction methods based on syntax trees, on the other hand, are computationally expensive and the interpretation of the generated trees is difficult. Several natural language processing (NLP) approaches for the biomedical domain exist focusing specifically on the detection of a limited set of relation types. For systems biology, generic approaches for the detection of a multitude of relation types which in addition are able to process large text corpora are needed but the number of systems meeting both requirements is very limited. We introduce the use of SENNA (Semantic Extraction using a Neural Network Architecture), a fast and accurate neural network based Semantic Role Labeling (SRL) program, for the large scale extraction of semantic relations from the biomedical literature. A comparison of processing times of SENNA and other SRL systems or syntactical parsers used in the biomedical domain revealed that SENNA is the fastest Proposition Bank (PropBank) conforming SRL program currently available. 89 million biomedical sentences were tagged with SENNA on a 100 node cluster within three days. The accuracy of the presented relation extraction approach was evaluated on two test sets of annotated sentences resulting in precision/recall values of 0.71/0.43. We show that the accuracy as well as processing speed of the proposed semantic relation extraction approach is sufficient for its large scale application on biomedical text. The proposed approach is highly generalizable regarding the supported relation types and appears to be especially suited for general-purpose, broad-scale text mining systems. The presented approach bridges the gap between fast, co-occurrence-based approaches lacking semantic relations and highly specialized and computationally demanding NLP approaches." @default.
- W2098408481 created "2016-06-24" @default.
- W2098408481 creator A5019335824 @default.
- W2098408481 creator A5045900336 @default.
- W2098408481 creator A5053915453 @default.
- W2098408481 creator A5076635608 @default.
- W2098408481 creator A5083703441 @default.
- W2098408481 date "2009-07-28" @default.
- W2098408481 modified "2023-10-13" @default.
- W2098408481 title "Large Scale Application of Neural Network Based Semantic Role Labeling for Automated Relation Extraction from Biomedical Texts" @default.
- W2098408481 cites W1648311451 @default.
- W2098408481 cites W1981518629 @default.
- W2098408481 cites W2044514479 @default.
- W2098408481 cites W2051871732 @default.
- W2098408481 cites W2097960255 @default.
- W2098408481 cites W2113202266 @default.
- W2098408481 cites W2121435899 @default.
- W2098408481 cites W2126276057 @default.
- W2098408481 cites W2139259976 @default.
- W2098408481 cites W2158847908 @default.
- W2098408481 cites W2159335058 @default.
- W2098408481 doi "https://doi.org/10.1371/journal.pone.0006393" @default.
- W2098408481 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2712690" @default.
- W2098408481 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19636432" @default.
- W2098408481 hasPublicationYear "2009" @default.
- W2098408481 type Work @default.
- W2098408481 sameAs 2098408481 @default.
- W2098408481 citedByCount "48" @default.
- W2098408481 countsByYear W20984084812012 @default.
- W2098408481 countsByYear W20984084812013 @default.
- W2098408481 countsByYear W20984084812014 @default.
- W2098408481 countsByYear W20984084812015 @default.
- W2098408481 countsByYear W20984084812016 @default.
- W2098408481 countsByYear W20984084812017 @default.
- W2098408481 countsByYear W20984084812018 @default.
- W2098408481 countsByYear W20984084812019 @default.
- W2098408481 countsByYear W20984084812020 @default.
- W2098408481 countsByYear W20984084812021 @default.
- W2098408481 countsByYear W20984084812022 @default.
- W2098408481 countsByYear W20984084812023 @default.
- W2098408481 crossrefType "journal-article" @default.
- W2098408481 hasAuthorship W2098408481A5019335824 @default.
- W2098408481 hasAuthorship W2098408481A5045900336 @default.
- W2098408481 hasAuthorship W2098408481A5053915453 @default.
- W2098408481 hasAuthorship W2098408481A5076635608 @default.
- W2098408481 hasAuthorship W2098408481A5083703441 @default.
- W2098408481 hasBestOaLocation W20984084811 @default.
- W2098408481 hasConcept C119857082 @default.
- W2098408481 hasConcept C124101348 @default.
- W2098408481 hasConcept C134306372 @default.
- W2098408481 hasConcept C153604712 @default.
- W2098408481 hasConcept C154945302 @default.
- W2098408481 hasConcept C177264268 @default.
- W2098408481 hasConcept C186644900 @default.
- W2098408481 hasConcept C195807954 @default.
- W2098408481 hasConcept C199360897 @default.
- W2098408481 hasConcept C204321447 @default.
- W2098408481 hasConcept C23123220 @default.
- W2098408481 hasConcept C25343380 @default.
- W2098408481 hasConcept C33923547 @default.
- W2098408481 hasConcept C36503486 @default.
- W2098408481 hasConcept C41008148 @default.
- W2098408481 hasConcept C50644808 @default.
- W2098408481 hasConcept C60048249 @default.
- W2098408481 hasConceptScore W2098408481C119857082 @default.
- W2098408481 hasConceptScore W2098408481C124101348 @default.
- W2098408481 hasConceptScore W2098408481C134306372 @default.
- W2098408481 hasConceptScore W2098408481C153604712 @default.
- W2098408481 hasConceptScore W2098408481C154945302 @default.
- W2098408481 hasConceptScore W2098408481C177264268 @default.
- W2098408481 hasConceptScore W2098408481C186644900 @default.
- W2098408481 hasConceptScore W2098408481C195807954 @default.
- W2098408481 hasConceptScore W2098408481C199360897 @default.
- W2098408481 hasConceptScore W2098408481C204321447 @default.
- W2098408481 hasConceptScore W2098408481C23123220 @default.
- W2098408481 hasConceptScore W2098408481C25343380 @default.
- W2098408481 hasConceptScore W2098408481C33923547 @default.
- W2098408481 hasConceptScore W2098408481C36503486 @default.
- W2098408481 hasConceptScore W2098408481C41008148 @default.
- W2098408481 hasConceptScore W2098408481C50644808 @default.
- W2098408481 hasConceptScore W2098408481C60048249 @default.
- W2098408481 hasIssue "7" @default.
- W2098408481 hasLocation W20984084811 @default.
- W2098408481 hasLocation W20984084812 @default.
- W2098408481 hasLocation W20984084813 @default.
- W2098408481 hasLocation W20984084814 @default.
- W2098408481 hasLocation W20984084815 @default.
- W2098408481 hasOpenAccess W2098408481 @default.
- W2098408481 hasPrimaryLocation W20984084811 @default.
- W2098408481 hasRelatedWork W1515542156 @default.
- W2098408481 hasRelatedWork W1590308178 @default.
- W2098408481 hasRelatedWork W2074870855 @default.
- W2098408481 hasRelatedWork W2146145883 @default.
- W2098408481 hasRelatedWork W2167390890 @default.
- W2098408481 hasRelatedWork W2368651715 @default.
- W2098408481 hasRelatedWork W2444550338 @default.
- W2098408481 hasRelatedWork W3201556757 @default.
- W2098408481 hasRelatedWork W4200103633 @default.