Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098488162> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2098488162 endingPage "416" @default.
- W2098488162 startingPage "405" @default.
- W2098488162 abstract "We consider two generalizations of the edge coloring problem in bipartite graphs. The first problem we consider is the weighted bipartite edge coloring problem where we are given an edge-weighted bipartite graph G = (V,E) with weights w:E→[0,1]. The task is to find a proper weighted coloring of the edges with as few colors as possible. An edge coloring of the weighted graph is called a proper weighted coloring if the sum of the weights of the edges incident to a vertex of any color is at most one. We give a polynomial time algorithm for the weighted bipartite edge coloring problem which returns a proper weighted coloring using at most ⌈2.25 n⌉ colors where n is the maximum total weight incident at any vertex. This improves on the previous best bound of Correa and Goemans [5] which returned a coloring using 2.557n + o(n) colors. The second problem we consider is the Balanced Decomposition of Bipartite graphs problem where we are given a bipartite graph G = (V,E) and α 1,...,α k ∈ (0,1) summing to one. The task is to find a partition E 1,..., E k of E such that $deg_{E_i}(v)$ is close to α i deg E (v) for each 1 ≤ i ≤ k and v ∈ V. We give an alternate proof of the result of Correa and Goemans [5] that there is a decomposition such that $lflooralpha_i deg_E(v) rfloor -2 leq deg_{E_i}(v) leq lceil alpha_i deg_E(v) rceil +2$ for each v ∈ V and 1 ≤ i ≤ k. Moreover, we show that the additive error can be improved from two to one if only upper bounds or only lower bounds on the degree are present. All our results hold also for bipartite multigraphs, and the decomposition results hold also for general graphs." @default.
- W2098488162 created "2016-06-24" @default.
- W2098488162 creator A5013190102 @default.
- W2098488162 creator A5020914506 @default.
- W2098488162 date "2008-08-30" @default.
- W2098488162 modified "2023-10-14" @default.
- W2098488162 title "Edge Coloring and Decompositions of Weighted Graphs" @default.
- W2098488162 cites W1972256863 @default.
- W2098488162 cites W1984364157 @default.
- W2098488162 cites W2011164326 @default.
- W2098488162 cites W2024071268 @default.
- W2098488162 cites W2062207559 @default.
- W2098488162 cites W2064810366 @default.
- W2098488162 cites W2078691045 @default.
- W2098488162 cites W2090785779 @default.
- W2098488162 cites W2096313289 @default.
- W2098488162 cites W2098045688 @default.
- W2098488162 cites W2140322654 @default.
- W2098488162 cites W2575492210 @default.
- W2098488162 cites W4244088687 @default.
- W2098488162 doi "https://doi.org/10.1007/978-3-540-87744-8_34" @default.
- W2098488162 hasPublicationYear "2008" @default.
- W2098488162 type Work @default.
- W2098488162 sameAs 2098488162 @default.
- W2098488162 citedByCount "5" @default.
- W2098488162 countsByYear W20984881622012 @default.
- W2098488162 countsByYear W20984881622015 @default.
- W2098488162 countsByYear W20984881622020 @default.
- W2098488162 countsByYear W20984881622023 @default.
- W2098488162 crossrefType "book-chapter" @default.
- W2098488162 hasAuthorship W2098488162A5013190102 @default.
- W2098488162 hasAuthorship W2098488162A5020914506 @default.
- W2098488162 hasBestOaLocation W20984881622 @default.
- W2098488162 hasConcept C114614502 @default.
- W2098488162 hasConcept C118615104 @default.
- W2098488162 hasConcept C123809776 @default.
- W2098488162 hasConcept C132525143 @default.
- W2098488162 hasConcept C134119311 @default.
- W2098488162 hasConcept C149530733 @default.
- W2098488162 hasConcept C197657726 @default.
- W2098488162 hasConcept C203776342 @default.
- W2098488162 hasConcept C33923547 @default.
- W2098488162 hasConcept C42812 @default.
- W2098488162 hasConcept C76946457 @default.
- W2098488162 hasConcept C80899671 @default.
- W2098488162 hasConceptScore W2098488162C114614502 @default.
- W2098488162 hasConceptScore W2098488162C118615104 @default.
- W2098488162 hasConceptScore W2098488162C123809776 @default.
- W2098488162 hasConceptScore W2098488162C132525143 @default.
- W2098488162 hasConceptScore W2098488162C134119311 @default.
- W2098488162 hasConceptScore W2098488162C149530733 @default.
- W2098488162 hasConceptScore W2098488162C197657726 @default.
- W2098488162 hasConceptScore W2098488162C203776342 @default.
- W2098488162 hasConceptScore W2098488162C33923547 @default.
- W2098488162 hasConceptScore W2098488162C42812 @default.
- W2098488162 hasConceptScore W2098488162C76946457 @default.
- W2098488162 hasConceptScore W2098488162C80899671 @default.
- W2098488162 hasLocation W20984881621 @default.
- W2098488162 hasLocation W20984881622 @default.
- W2098488162 hasOpenAccess W2098488162 @default.
- W2098488162 hasPrimaryLocation W20984881621 @default.
- W2098488162 hasRelatedWork W1988771411 @default.
- W2098488162 hasRelatedWork W2018072810 @default.
- W2098488162 hasRelatedWork W2082689120 @default.
- W2098488162 hasRelatedWork W2098488162 @default.
- W2098488162 hasRelatedWork W2951061933 @default.
- W2098488162 hasRelatedWork W2951103115 @default.
- W2098488162 hasRelatedWork W3100313843 @default.
- W2098488162 hasRelatedWork W3210246464 @default.
- W2098488162 hasRelatedWork W4246619488 @default.
- W2098488162 hasRelatedWork W4302031060 @default.
- W2098488162 isParatext "false" @default.
- W2098488162 isRetracted "false" @default.
- W2098488162 magId "2098488162" @default.
- W2098488162 workType "book-chapter" @default.