Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098589050> ?p ?o ?g. }
- W2098589050 endingPage "2198" @default.
- W2098589050 startingPage "2172" @default.
- W2098589050 abstract "Chandrasekaran, Parrilo, and Willsky ( 2012 ) proposed a convex optimization problem for graphical model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization problem is very challenging, especially for large problems. In this letter, we propose two alternating direction methods for solving this problem. The first method is to apply the classic alternating direction method of multipliers to solve the problem as a consensus problem. The second method is a proximal gradient-based alternating-direction method of multipliers. Our methods take advantage of the special structure of the problem and thus can solve large problems very efficiently. A global convergence result is established for the proposed methods. Numerical results on both synthetic data and gene expression data show that our methods usually solve problems with 1 million variables in 1 to 2 minutes and are usually 5 to 35 times faster than a state-of-the-art Newton-CG proximal point algorithm." @default.
- W2098589050 created "2016-06-24" @default.
- W2098589050 creator A5008787209 @default.
- W2098589050 creator A5079252402 @default.
- W2098589050 creator A5089400160 @default.
- W2098589050 date "2013-08-01" @default.
- W2098589050 modified "2023-10-13" @default.
- W2098589050 title "Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection" @default.
- W2098589050 cites W1125881252 @default.
- W2098589050 cites W1494413412 @default.
- W2098589050 cites W1966881087 @default.
- W2098589050 cites W1970208077 @default.
- W2098589050 cites W1978333359 @default.
- W2098589050 cites W1986941254 @default.
- W2098589050 cites W1989727964 @default.
- W2098589050 cites W2001334414 @default.
- W2098589050 cites W2003372231 @default.
- W2098589050 cites W2006262045 @default.
- W2098589050 cites W2019569173 @default.
- W2098589050 cites W2026517977 @default.
- W2098589050 cites W2044600950 @default.
- W2098589050 cites W2046866204 @default.
- W2098589050 cites W2053186586 @default.
- W2098589050 cites W2055400003 @default.
- W2098589050 cites W2058532290 @default.
- W2098589050 cites W2072536590 @default.
- W2098589050 cites W2074360197 @default.
- W2098589050 cites W2079261074 @default.
- W2098589050 cites W2081746825 @default.
- W2098589050 cites W2083138589 @default.
- W2098589050 cites W2093042090 @default.
- W2098589050 cites W2095036901 @default.
- W2098589050 cites W2111539174 @default.
- W2098589050 cites W2113968881 @default.
- W2098589050 cites W2125631472 @default.
- W2098589050 cites W2132555912 @default.
- W2098589050 cites W2142058898 @default.
- W2098589050 cites W2142280715 @default.
- W2098589050 cites W2142333440 @default.
- W2098589050 cites W2146264532 @default.
- W2098589050 cites W2150002853 @default.
- W2098589050 cites W2161920970 @default.
- W2098589050 cites W2763292376 @default.
- W2098589050 cites W2949483514 @default.
- W2098589050 cites W3098724218 @default.
- W2098589050 cites W3098834468 @default.
- W2098589050 cites W3103354362 @default.
- W2098589050 cites W3105340263 @default.
- W2098589050 cites W3106319742 @default.
- W2098589050 cites W3124841675 @default.
- W2098589050 cites W4241295153 @default.
- W2098589050 cites W4249512175 @default.
- W2098589050 cites W4250589301 @default.
- W2098589050 cites W4292363360 @default.
- W2098589050 cites W4301283118 @default.
- W2098589050 doi "https://doi.org/10.1162/neco_a_00379" @default.
- W2098589050 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23607561" @default.
- W2098589050 hasPublicationYear "2013" @default.
- W2098589050 type Work @default.
- W2098589050 sameAs 2098589050 @default.
- W2098589050 citedByCount "81" @default.
- W2098589050 countsByYear W20985890502013 @default.
- W2098589050 countsByYear W20985890502014 @default.
- W2098589050 countsByYear W20985890502015 @default.
- W2098589050 countsByYear W20985890502016 @default.
- W2098589050 countsByYear W20985890502017 @default.
- W2098589050 countsByYear W20985890502018 @default.
- W2098589050 countsByYear W20985890502019 @default.
- W2098589050 countsByYear W20985890502020 @default.
- W2098589050 countsByYear W20985890502021 @default.
- W2098589050 countsByYear W20985890502023 @default.
- W2098589050 crossrefType "journal-article" @default.
- W2098589050 hasAuthorship W2098589050A5008787209 @default.
- W2098589050 hasAuthorship W2098589050A5079252402 @default.
- W2098589050 hasAuthorship W2098589050A5089400160 @default.
- W2098589050 hasBestOaLocation W20985890502 @default.
- W2098589050 hasConcept C10494615 @default.
- W2098589050 hasConcept C106487976 @default.
- W2098589050 hasConcept C112680207 @default.
- W2098589050 hasConcept C11413529 @default.
- W2098589050 hasConcept C114614502 @default.
- W2098589050 hasConcept C121332964 @default.
- W2098589050 hasConcept C126255220 @default.
- W2098589050 hasConcept C134306372 @default.
- W2098589050 hasConcept C135252773 @default.
- W2098589050 hasConcept C137836250 @default.
- W2098589050 hasConcept C155253501 @default.
- W2098589050 hasConcept C157972887 @default.
- W2098589050 hasConcept C159985019 @default.
- W2098589050 hasConcept C162324750 @default.
- W2098589050 hasConcept C163716315 @default.
- W2098589050 hasConcept C164226766 @default.
- W2098589050 hasConcept C192562407 @default.
- W2098589050 hasConcept C2524010 @default.
- W2098589050 hasConcept C2777303404 @default.
- W2098589050 hasConcept C33923547 @default.
- W2098589050 hasConcept C41008148 @default.
- W2098589050 hasConcept C50522688 @default.