Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098936618> ?p ?o ?g. }
- W2098936618 endingPage "24" @default.
- W2098936618 startingPage "1" @default.
- W2098936618 abstract "This Chapter review the fast Fourier transform (FFT) technique and its application to computational electromagnetics, especially to the fast solver algorithms including the Conjugate Gradient Fast Fourier Transform (CG‐FFT) method, Precorrected Fast Fourier Transform (pFFT) method, Adaptive Integral Method (AIM), Greens Function Interpolation with FFT (GI‐FFT) method and Integral Equations with FFT (IE‐FFT) method. The basic ideas used in the FFT applications are addressed while the brief introduction to integral equation method is conducted. The general formulation and procedure in the integral equation method, surface integral equations, volume integral equations, solutions to integral equations, and their implementations of fast Fourier transform algorithm are also briefed together with fast convolution using fast Fourier transform. Fast integral equation method developed based on fast Fourier transform are reviewed where conjugate gradient fast Fourier transform method, and precorrected fast Fourier transform method (where projection operators and interpolation operators are also highlighted), adaptive integral method, Greens function interpolation with FFT approach and integral equations with FFT method are also described. While the matching schemes for gradients of Green's functions are addressed, accuracy and complexity, memory requirement and computational cost, and error controls and estimations are also discussed." @default.
- W2098936618 created "2016-06-24" @default.
- W2098936618 creator A5009390195 @default.
- W2098936618 creator A5031087004 @default.
- W2098936618 date "2014-09-15" @default.
- W2098936618 modified "2023-10-05" @default.
- W2098936618 title "Fast Fourier Transforms in Electromagnetics" @default.
- W2098936618 cites W1515302430 @default.
- W2098936618 cites W1847038087 @default.
- W2098936618 cites W1963945589 @default.
- W2098936618 cites W1970030975 @default.
- W2098936618 cites W1972082321 @default.
- W2098936618 cites W1972145837 @default.
- W2098936618 cites W1973767646 @default.
- W2098936618 cites W1991333140 @default.
- W2098936618 cites W1992179383 @default.
- W2098936618 cites W1997202650 @default.
- W2098936618 cites W1997289198 @default.
- W2098936618 cites W1999769472 @default.
- W2098936618 cites W2005539200 @default.
- W2098936618 cites W2009842021 @default.
- W2098936618 cites W2010452124 @default.
- W2098936618 cites W2015395026 @default.
- W2098936618 cites W2022224610 @default.
- W2098936618 cites W2026139685 @default.
- W2098936618 cites W2026447062 @default.
- W2098936618 cites W2027242284 @default.
- W2098936618 cites W2033907024 @default.
- W2098936618 cites W2035290404 @default.
- W2098936618 cites W2036556509 @default.
- W2098936618 cites W2040298674 @default.
- W2098936618 cites W2054089535 @default.
- W2098936618 cites W2054380687 @default.
- W2098936618 cites W2054719073 @default.
- W2098936618 cites W2070063058 @default.
- W2098936618 cites W2079076185 @default.
- W2098936618 cites W2079850390 @default.
- W2098936618 cites W2083206954 @default.
- W2098936618 cites W2084385130 @default.
- W2098936618 cites W2088812987 @default.
- W2098936618 cites W2090111309 @default.
- W2098936618 cites W2094296399 @default.
- W2098936618 cites W2095788138 @default.
- W2098936618 cites W2096967716 @default.
- W2098936618 cites W2097595376 @default.
- W2098936618 cites W2099785566 @default.
- W2098936618 cites W2100431381 @default.
- W2098936618 cites W2100851538 @default.
- W2098936618 cites W2101828097 @default.
- W2098936618 cites W2102719528 @default.
- W2098936618 cites W2112877924 @default.
- W2098936618 cites W2113946942 @default.
- W2098936618 cites W2119171915 @default.
- W2098936618 cites W2119612139 @default.
- W2098936618 cites W2119997434 @default.
- W2098936618 cites W2120832966 @default.
- W2098936618 cites W2122849672 @default.
- W2098936618 cites W2123589135 @default.
- W2098936618 cites W2128556617 @default.
- W2098936618 cites W2131688765 @default.
- W2098936618 cites W2138267208 @default.
- W2098936618 cites W2139126151 @default.
- W2098936618 cites W2143887891 @default.
- W2098936618 cites W2148463450 @default.
- W2098936618 cites W2149812806 @default.
- W2098936618 cites W2149931851 @default.
- W2098936618 cites W2150125958 @default.
- W2098936618 cites W2155244100 @default.
- W2098936618 cites W2156250443 @default.
- W2098936618 cites W2160295960 @default.
- W2098936618 cites W2162157932 @default.
- W2098936618 cites W2163068304 @default.
- W2098936618 cites W2169243036 @default.
- W2098936618 cites W2170163309 @default.
- W2098936618 cites W2171771557 @default.
- W2098936618 cites W2171879949 @default.
- W2098936618 cites W2172198008 @default.
- W2098936618 cites W4206196235 @default.
- W2098936618 cites W4299616802 @default.
- W2098936618 doi "https://doi.org/10.1002/047134608x.w8221" @default.
- W2098936618 hasPublicationYear "2014" @default.
- W2098936618 type Work @default.
- W2098936618 sameAs 2098936618 @default.
- W2098936618 citedByCount "0" @default.
- W2098936618 crossrefType "other" @default.
- W2098936618 hasAuthorship W2098936618A5009390195 @default.
- W2098936618 hasAuthorship W2098936618A5031087004 @default.
- W2098936618 hasConcept C102519508 @default.
- W2098936618 hasConcept C103755468 @default.
- W2098936618 hasConcept C104114177 @default.
- W2098936618 hasConcept C11413529 @default.
- W2098936618 hasConcept C134306372 @default.
- W2098936618 hasConcept C137800194 @default.
- W2098936618 hasConcept C154945302 @default.
- W2098936618 hasConcept C177937620 @default.
- W2098936618 hasConcept C203024314 @default.
- W2098936618 hasConcept C27016315 @default.
- W2098936618 hasConcept C33923547 @default.