Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098943513> ?p ?o ?g. }
- W2098943513 endingPage "467" @default.
- W2098943513 startingPage "458" @default.
- W2098943513 abstract "Purpose To present and evaluate a new method of integrating event- and trend-based analyses of visual field progression in glaucoma. Design Observational cohort study. Participants The study included 711 eyes of 357 glaucoma patients or suspects followed up for an average of 5.0±2.0 years with an average of 7.7±2.3 standard automated perimetry visual fields. An additional group of 55 eyes of 55 glaucoma patients underwent repeated tests over a short period to test the specificity of the method. Methods Event-based analysis of progression was performed using the Guided Progression Analysis (GPA; Carl-Zeiss Meditec, Inc., Dublin, CA). Trend-based assessment used the visual field index (VFI). A hierarchical Bayesian model was built to incorporate results from the GPA in the prior distribution for the VFI slopes, allowing the event-based method to influence the inferences made for the trend-based assessment. Main Outcome Measures The Bayesian method was compared with the conventional ordinary least squares (OLS) regression method of trend-based assessment. Results Of the 711 eyes followed up over time, 64 (9%) had confirmed progression with GPA. Bayesian slopes of VFI change were able to detect 63 of these eyes (98%). An additional group of 49 eyes (7%) had progression by Bayesian slopes, but not by GPA. Slopes of VFI change calculated by the OLS method were able to identify only 32 of the 64 eyes (50%) with GPA progression. The agreement with GPA was significantly better for the Bayesian compared with the OLS method (κ = 0.68 vs. 0.43, respectively; P<0.001). Eyes progressing only by the Bayesian method had faster rates of change than those progressing only by the OLS method. When applied to the 50 eyes in the stable glaucoma group, both the Bayesian and the OLS methods had a specificity of 96%. Conclusions A Bayesian hierarchical modeling approach for integrating event- and trend-based assessments of visual field progression performed better than either method used alone. Estimates of rates of change obtained from the Bayesian model had increased precision and may be superior to the conventional OLS method for providing information on the risk of development of functional impairment in the disease. Financial Disclosure(s) Proprietary or commercial disclosure may be found after the references. To present and evaluate a new method of integrating event- and trend-based analyses of visual field progression in glaucoma. Observational cohort study. The study included 711 eyes of 357 glaucoma patients or suspects followed up for an average of 5.0±2.0 years with an average of 7.7±2.3 standard automated perimetry visual fields. An additional group of 55 eyes of 55 glaucoma patients underwent repeated tests over a short period to test the specificity of the method. Event-based analysis of progression was performed using the Guided Progression Analysis (GPA; Carl-Zeiss Meditec, Inc., Dublin, CA). Trend-based assessment used the visual field index (VFI). A hierarchical Bayesian model was built to incorporate results from the GPA in the prior distribution for the VFI slopes, allowing the event-based method to influence the inferences made for the trend-based assessment. The Bayesian method was compared with the conventional ordinary least squares (OLS) regression method of trend-based assessment. Of the 711 eyes followed up over time, 64 (9%) had confirmed progression with GPA. Bayesian slopes of VFI change were able to detect 63 of these eyes (98%). An additional group of 49 eyes (7%) had progression by Bayesian slopes, but not by GPA. Slopes of VFI change calculated by the OLS method were able to identify only 32 of the 64 eyes (50%) with GPA progression. The agreement with GPA was significantly better for the Bayesian compared with the OLS method (κ = 0.68 vs. 0.43, respectively; P<0.001). Eyes progressing only by the Bayesian method had faster rates of change than those progressing only by the OLS method. When applied to the 50 eyes in the stable glaucoma group, both the Bayesian and the OLS methods had a specificity of 96%. A Bayesian hierarchical modeling approach for integrating event- and trend-based assessments of visual field progression performed better than either method used alone. Estimates of rates of change obtained from the Bayesian model had increased precision and may be superior to the conventional OLS method for providing information on the risk of development of functional impairment in the disease." @default.
- W2098943513 created "2016-06-24" @default.
- W2098943513 creator A5000955140 @default.
- W2098943513 creator A5043994887 @default.
- W2098943513 creator A5063363976 @default.
- W2098943513 creator A5075198015 @default.
- W2098943513 creator A5082809595 @default.
- W2098943513 creator A5083313735 @default.
- W2098943513 date "2012-03-01" @default.
- W2098943513 modified "2023-09-25" @default.
- W2098943513 title "Integrating Event- and Trend-Based Analyses to Improve Detection of Glaucomatous Visual Field Progression" @default.
- W2098943513 cites W1517555081 @default.
- W2098943513 cites W1971307050 @default.
- W2098943513 cites W1989239239 @default.
- W2098943513 cites W2003052705 @default.
- W2098943513 cites W2007611245 @default.
- W2098943513 cites W2020396326 @default.
- W2098943513 cites W2025296215 @default.
- W2098943513 cites W2026209674 @default.
- W2098943513 cites W2039963130 @default.
- W2098943513 cites W2041606628 @default.
- W2098943513 cites W2042098225 @default.
- W2098943513 cites W2045519105 @default.
- W2098943513 cites W2046687383 @default.
- W2098943513 cites W2059166063 @default.
- W2098943513 cites W2061841032 @default.
- W2098943513 cites W2066600245 @default.
- W2098943513 cites W2075660595 @default.
- W2098943513 cites W2076607003 @default.
- W2098943513 cites W2081618857 @default.
- W2098943513 cites W2082246284 @default.
- W2098943513 cites W2087028773 @default.
- W2098943513 cites W2090432035 @default.
- W2098943513 cites W2104729156 @default.
- W2098943513 cites W2106168155 @default.
- W2098943513 cites W2109284646 @default.
- W2098943513 cites W2116515649 @default.
- W2098943513 cites W2128959641 @default.
- W2098943513 cites W2129408834 @default.
- W2098943513 cites W2131345225 @default.
- W2098943513 cites W2137440344 @default.
- W2098943513 cites W2155245960 @default.
- W2098943513 cites W2616439427 @default.
- W2098943513 doi "https://doi.org/10.1016/j.ophtha.2011.10.003" @default.
- W2098943513 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3710401" @default.
- W2098943513 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22266109" @default.
- W2098943513 hasPublicationYear "2012" @default.
- W2098943513 type Work @default.
- W2098943513 sameAs 2098943513 @default.
- W2098943513 citedByCount "31" @default.
- W2098943513 countsByYear W20989435132012 @default.
- W2098943513 countsByYear W20989435132013 @default.
- W2098943513 countsByYear W20989435132014 @default.
- W2098943513 countsByYear W20989435132015 @default.
- W2098943513 countsByYear W20989435132017 @default.
- W2098943513 countsByYear W20989435132018 @default.
- W2098943513 countsByYear W20989435132019 @default.
- W2098943513 countsByYear W20989435132020 @default.
- W2098943513 countsByYear W20989435132021 @default.
- W2098943513 countsByYear W20989435132022 @default.
- W2098943513 countsByYear W20989435132023 @default.
- W2098943513 crossrefType "journal-article" @default.
- W2098943513 hasAuthorship W2098943513A5000955140 @default.
- W2098943513 hasAuthorship W2098943513A5043994887 @default.
- W2098943513 hasAuthorship W2098943513A5063363976 @default.
- W2098943513 hasAuthorship W2098943513A5075198015 @default.
- W2098943513 hasAuthorship W2098943513A5082809595 @default.
- W2098943513 hasAuthorship W2098943513A5083313735 @default.
- W2098943513 hasBestOaLocation W20989435132 @default.
- W2098943513 hasConcept C105795698 @default.
- W2098943513 hasConcept C107673813 @default.
- W2098943513 hasConcept C118487528 @default.
- W2098943513 hasConcept C119767625 @default.
- W2098943513 hasConcept C126322002 @default.
- W2098943513 hasConcept C154945302 @default.
- W2098943513 hasConcept C23131810 @default.
- W2098943513 hasConcept C2776058522 @default.
- W2098943513 hasConcept C2778257484 @default.
- W2098943513 hasConcept C2778527774 @default.
- W2098943513 hasConcept C33923547 @default.
- W2098943513 hasConcept C41008148 @default.
- W2098943513 hasConcept C71924100 @default.
- W2098943513 hasConcept C99656134 @default.
- W2098943513 hasConceptScore W2098943513C105795698 @default.
- W2098943513 hasConceptScore W2098943513C107673813 @default.
- W2098943513 hasConceptScore W2098943513C118487528 @default.
- W2098943513 hasConceptScore W2098943513C119767625 @default.
- W2098943513 hasConceptScore W2098943513C126322002 @default.
- W2098943513 hasConceptScore W2098943513C154945302 @default.
- W2098943513 hasConceptScore W2098943513C23131810 @default.
- W2098943513 hasConceptScore W2098943513C2776058522 @default.
- W2098943513 hasConceptScore W2098943513C2778257484 @default.
- W2098943513 hasConceptScore W2098943513C2778527774 @default.
- W2098943513 hasConceptScore W2098943513C33923547 @default.
- W2098943513 hasConceptScore W2098943513C41008148 @default.
- W2098943513 hasConceptScore W2098943513C71924100 @default.
- W2098943513 hasConceptScore W2098943513C99656134 @default.
- W2098943513 hasIssue "3" @default.