Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098984972> ?p ?o ?g. }
- W2098984972 endingPage "1151" @default.
- W2098984972 startingPage "1130" @default.
- W2098984972 abstract "Abstract In this article, we consider the problem of optimal approximation of eigenfunctions of Schrödinger operators with isolated inverse square potentials and of solutions to equations involving such operators. It is known in this situation that the finite element method performs poorly with standard meshes. We construct an alternative class of graded meshes, and prove and numerically test optimal approximation results for the finite element method using these meshes. Our numerical tests are in good agreement with our theoretical results.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1130–1151, 2014" @default.
- W2098984972 created "2016-06-24" @default.
- W2098984972 creator A5029413421 @default.
- W2098984972 creator A5059641441 @default.
- W2098984972 creator A5071352148 @default.
- W2098984972 creator A5080524039 @default.
- W2098984972 date "2014-02-06" @default.
- W2098984972 modified "2023-09-26" @default.
- W2098984972 title "Analysis of Schrödinger operators with inverse square potentials II: FEM and approximation of eigenfunctions in the periodic case" @default.
- W2098984972 cites W1554959944 @default.
- W2098984972 cites W1572617741 @default.
- W2098984972 cites W1977643832 @default.
- W2098984972 cites W1981792545 @default.
- W2098984972 cites W1985762640 @default.
- W2098984972 cites W1987658939 @default.
- W2098984972 cites W1988774639 @default.
- W2098984972 cites W1990669907 @default.
- W2098984972 cites W1995745706 @default.
- W2098984972 cites W2005436751 @default.
- W2098984972 cites W2006047654 @default.
- W2098984972 cites W2009909200 @default.
- W2098984972 cites W2011593340 @default.
- W2098984972 cites W2020930931 @default.
- W2098984972 cites W2032916960 @default.
- W2098984972 cites W2040098164 @default.
- W2098984972 cites W2040552197 @default.
- W2098984972 cites W2041368172 @default.
- W2098984972 cites W2046105540 @default.
- W2098984972 cites W2057292049 @default.
- W2098984972 cites W2058392110 @default.
- W2098984972 cites W2091491115 @default.
- W2098984972 cites W2094695561 @default.
- W2098984972 cites W2117083307 @default.
- W2098984972 cites W2124413011 @default.
- W2098984972 cites W2129114523 @default.
- W2098984972 cites W2135297899 @default.
- W2098984972 cites W2145995744 @default.
- W2098984972 cites W3106352048 @default.
- W2098984972 cites W4205180919 @default.
- W2098984972 cites W4234184333 @default.
- W2098984972 cites W4238473319 @default.
- W2098984972 cites W4292360407 @default.
- W2098984972 doi "https://doi.org/10.1002/num.21861" @default.
- W2098984972 hasPublicationYear "2014" @default.
- W2098984972 type Work @default.
- W2098984972 sameAs 2098984972 @default.
- W2098984972 citedByCount "7" @default.
- W2098984972 countsByYear W20989849722012 @default.
- W2098984972 countsByYear W20989849722015 @default.
- W2098984972 countsByYear W20989849722020 @default.
- W2098984972 countsByYear W20989849722021 @default.
- W2098984972 countsByYear W20989849722022 @default.
- W2098984972 countsByYear W20989849722023 @default.
- W2098984972 crossrefType "journal-article" @default.
- W2098984972 hasAuthorship W2098984972A5029413421 @default.
- W2098984972 hasAuthorship W2098984972A5059641441 @default.
- W2098984972 hasAuthorship W2098984972A5071352148 @default.
- W2098984972 hasAuthorship W2098984972A5080524039 @default.
- W2098984972 hasBestOaLocation W20989849723 @default.
- W2098984972 hasConcept C104317684 @default.
- W2098984972 hasConcept C121332964 @default.
- W2098984972 hasConcept C128803854 @default.
- W2098984972 hasConcept C134306372 @default.
- W2098984972 hasConcept C135252773 @default.
- W2098984972 hasConcept C135628077 @default.
- W2098984972 hasConcept C135692309 @default.
- W2098984972 hasConcept C154945302 @default.
- W2098984972 hasConcept C158448853 @default.
- W2098984972 hasConcept C158693339 @default.
- W2098984972 hasConcept C17020691 @default.
- W2098984972 hasConcept C185592680 @default.
- W2098984972 hasConcept C207467116 @default.
- W2098984972 hasConcept C2524010 @default.
- W2098984972 hasConcept C2777212361 @default.
- W2098984972 hasConcept C28826006 @default.
- W2098984972 hasConcept C31487907 @default.
- W2098984972 hasConcept C33923547 @default.
- W2098984972 hasConcept C41008148 @default.
- W2098984972 hasConcept C55493867 @default.
- W2098984972 hasConcept C62520636 @default.
- W2098984972 hasConcept C70915906 @default.
- W2098984972 hasConcept C86339819 @default.
- W2098984972 hasConcept C97355855 @default.
- W2098984972 hasConceptScore W2098984972C104317684 @default.
- W2098984972 hasConceptScore W2098984972C121332964 @default.
- W2098984972 hasConceptScore W2098984972C128803854 @default.
- W2098984972 hasConceptScore W2098984972C134306372 @default.
- W2098984972 hasConceptScore W2098984972C135252773 @default.
- W2098984972 hasConceptScore W2098984972C135628077 @default.
- W2098984972 hasConceptScore W2098984972C135692309 @default.
- W2098984972 hasConceptScore W2098984972C154945302 @default.
- W2098984972 hasConceptScore W2098984972C158448853 @default.
- W2098984972 hasConceptScore W2098984972C158693339 @default.
- W2098984972 hasConceptScore W2098984972C17020691 @default.
- W2098984972 hasConceptScore W2098984972C185592680 @default.
- W2098984972 hasConceptScore W2098984972C207467116 @default.
- W2098984972 hasConceptScore W2098984972C2524010 @default.
- W2098984972 hasConceptScore W2098984972C2777212361 @default.