Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098986253> ?p ?o ?g. }
- W2098986253 endingPage "238" @default.
- W2098986253 startingPage "225" @default.
- W2098986253 abstract "The Middle–Lower Yangtze River Valley is one of the most important metallogenic belts in China, hosting numerous Cu–Fe–Au–Mo deposits. The Taochong deposit is located in the northern part of the Fanchang iron ore district of the Middle–Lower Yangtze River metallogenic belt. The Fe-orebody is hosted by Middle Carboniferous to Lower Permian limestones. Skarns and Fe-orebodies occur as tabular bodies along interlayer-gliding faults, at some distance from the inferred granitic intrusions. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity—the skarn, iron oxide (main mineralization stage), and carbonate stages—all contributed to the formation of the Taochong iron deposit. The skarn stage is characterized by the formation of garnet and pyroxene, with high-temperature, hypersaline hydrothermal fluids with isotopic compositions similar to those of typical magmatic fluids. These fluids were probably generated by the separation of brine from a silicate melt instead of the product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by actinolite, chlorite, quartz, calcite and hematite. The hydrothermal fluids at this stage are represented by saline fluid inclusions that coexist with vapor-rich inclusions with anomalously low δD values (− 66‰ to − 94‰). The decrease in ore fluid δ18Owater with time and decreasing depth is consistent with the decreases in fluid salinity and temperature. The fluid δD values also show a decreasing trend with decreasing depth. Both fluid inclusion and stable isotopic data suggest that the ore fluid during the main period of mineralization was evolved by the boiling of various mixtures of magmatic brine and meteoric water. This process was probably induced by a drop in pressure from lithostatic to hydrostatic. The carbonate stage is represented by calcite veins that cut across the skarn and orebody, locally producing a dense stockwork. This observation indicates the veins formed during the waning stages of hydrothermal activity. The fluids from this stage are mainly represented by a variety of low-salinity fluid inclusions, as well as fewer high-salinity inclusions. These particular fluids have the lowest δ18Owater values (− 2.2‰ to 0.4‰) and a wide of range of δD values (− 40‰ to − 81‰), which indicate that they were originated from a mixture of residual fluids from the oxide stage, various amounts of meteoric water, and possibly condensed vapor. Low-temperature boiling probably occurred during this stage. We also discuss the reasons behind the anomalously low δD values in fluid inclusion water extracted by thermal decrepitation from quartz at high temperatures, and suggest that calcite data provide a possible benchmark for adjusting low δD values found in quartz intergrown with calcite." @default.
- W2098986253 created "2016-06-24" @default.
- W2098986253 creator A5019818599 @default.
- W2098986253 creator A5027091629 @default.
- W2098986253 creator A5037642140 @default.
- W2098986253 creator A5052686613 @default.
- W2098986253 creator A5067388487 @default.
- W2098986253 creator A5070471347 @default.
- W2098986253 date "2012-10-01" @default.
- W2098986253 modified "2023-10-03" @default.
- W2098986253 title "Origin and evolution of hydrothermal fluids in the Taochong iron deposit, Middle–Lower Yangtze Valley, Eastern China: Evidence from microthermometric and stable isotope analyses of fluid inclusions" @default.
- W2098986253 cites W1555716570 @default.
- W2098986253 cites W1874381902 @default.
- W2098986253 cites W1963525558 @default.
- W2098986253 cites W1964831515 @default.
- W2098986253 cites W1966756346 @default.
- W2098986253 cites W1969185593 @default.
- W2098986253 cites W1979567004 @default.
- W2098986253 cites W1980601506 @default.
- W2098986253 cites W1986234848 @default.
- W2098986253 cites W1988814147 @default.
- W2098986253 cites W1989068278 @default.
- W2098986253 cites W1990148864 @default.
- W2098986253 cites W1997866625 @default.
- W2098986253 cites W2001119618 @default.
- W2098986253 cites W2004645897 @default.
- W2098986253 cites W2009293338 @default.
- W2098986253 cites W2018107617 @default.
- W2098986253 cites W2020161194 @default.
- W2098986253 cites W2020659719 @default.
- W2098986253 cites W2024349823 @default.
- W2098986253 cites W2030369229 @default.
- W2098986253 cites W2032430204 @default.
- W2098986253 cites W2033571061 @default.
- W2098986253 cites W2037165116 @default.
- W2098986253 cites W2044496537 @default.
- W2098986253 cites W2044537972 @default.
- W2098986253 cites W2045280171 @default.
- W2098986253 cites W2046139359 @default.
- W2098986253 cites W2051938794 @default.
- W2098986253 cites W2061741067 @default.
- W2098986253 cites W2068202901 @default.
- W2098986253 cites W2069370400 @default.
- W2098986253 cites W2072599691 @default.
- W2098986253 cites W2076972641 @default.
- W2098986253 cites W2086543775 @default.
- W2098986253 cites W2090757504 @default.
- W2098986253 cites W2093039856 @default.
- W2098986253 cites W2115375715 @default.
- W2098986253 cites W2127152698 @default.
- W2098986253 cites W2130671212 @default.
- W2098986253 cites W2137061657 @default.
- W2098986253 cites W2141573895 @default.
- W2098986253 cites W2143334304 @default.
- W2098986253 cites W2164925786 @default.
- W2098986253 cites W2396162497 @default.
- W2098986253 cites W4231085611 @default.
- W2098986253 doi "https://doi.org/10.1016/j.oregeorev.2012.03.009" @default.
- W2098986253 hasPublicationYear "2012" @default.
- W2098986253 type Work @default.
- W2098986253 sameAs 2098986253 @default.
- W2098986253 citedByCount "21" @default.
- W2098986253 countsByYear W20989862532015 @default.
- W2098986253 countsByYear W20989862532016 @default.
- W2098986253 countsByYear W20989862532017 @default.
- W2098986253 countsByYear W20989862532019 @default.
- W2098986253 countsByYear W20989862532020 @default.
- W2098986253 countsByYear W20989862532021 @default.
- W2098986253 countsByYear W20989862532023 @default.
- W2098986253 crossrefType "journal-article" @default.
- W2098986253 hasAuthorship W2098986253A5019818599 @default.
- W2098986253 hasAuthorship W2098986253A5027091629 @default.
- W2098986253 hasAuthorship W2098986253A5037642140 @default.
- W2098986253 hasAuthorship W2098986253A5052686613 @default.
- W2098986253 hasAuthorship W2098986253A5067388487 @default.
- W2098986253 hasAuthorship W2098986253A5070471347 @default.
- W2098986253 hasConcept C109007969 @default.
- W2098986253 hasConcept C114793014 @default.
- W2098986253 hasConcept C116637073 @default.
- W2098986253 hasConcept C127313418 @default.
- W2098986253 hasConcept C151730666 @default.
- W2098986253 hasConcept C156622251 @default.
- W2098986253 hasConcept C15785431 @default.
- W2098986253 hasConcept C165205528 @default.
- W2098986253 hasConcept C17409809 @default.
- W2098986253 hasConcept C195843664 @default.
- W2098986253 hasConcept C199289684 @default.
- W2098986253 hasConcept C2776152364 @default.
- W2098986253 hasConcept C2777844515 @default.
- W2098986253 hasConcept C2778357522 @default.
- W2098986253 hasConcept C2778998827 @default.
- W2098986253 hasConcept C2779870107 @default.
- W2098986253 hasConcept C2780191791 @default.
- W2098986253 hasConcept C2780364934 @default.
- W2098986253 hasConcept C2781366471 @default.
- W2098986253 hasConcept C59235061 @default.
- W2098986253 hasConcept C7145564 @default.
- W2098986253 hasConcept C92720285 @default.