Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098989215> ?p ?o ?g. }
- W2098989215 endingPage "112" @default.
- W2098989215 startingPage "97" @default.
- W2098989215 abstract "Abstract A fully coupled land–ocean–atmosphere GCM is used to explore the biogeophysical impact of large-scale deforestation on surface climate. By analyzing the model sensitivity to global-scale replacement of forests by grassland, it is shown that the surface albedo increase owing to deforestation has a cooling effect of −1.36 K globally. On the other hand, forest removal decreases evapotranspiration efficiency and decreases surface roughness, both leading to a global surface warming of 0.24 and 0.29 K, respectively. The net biogeophysical impact of deforestation results from the competition between these effects. Globally, the albedo effect is dominant because of its wider-scale impact, and the net biogeophysical impact of deforestation is thus a cooling of −1 K. Over land, the balance between the different processes varies with latitude. In temperate and boreal zones of the Northern Hemisphere the albedo effect is stronger and deforestation thus induces a cooling. Conversely, in the tropics the net impact of deforestation is a warming, because evapotranspiration efficiency and surface roughness provide the dominant influence. The authors also explore the importance of the ocean coupling in shaping the climate response to deforestation. First, the temperature over ocean responds to the land cover perturbation. Second, even the temperature change over land is greatly affected by the ocean coupling. By assuming fixed oceanic conditions, the net effect of deforestation, averaged over all land areas, is a warming, whereas taking into account the coupling with the ocean leads, on the contrary, to a net land cooling. Furthermore, it is shown that the main parameter involved in the coupling with the ocean is surface albedo. Indeed, a change in albedo modifies temperature and humidity in the whole troposphere, thus enabling the initially land-confined perturbation to be transferred to the ocean. Finally, the radiative forcing framework is discussed in the context of land cover change impact on climate. The experiments herein illustrate that deforestation triggers two opposite types of forcing mechanisms—radiative forcing (owing to surface albedo change) and nonradiative forcing (owing to change in evapotranspiration efficiency and surface roughness)—that exhibit a similar magnitude globally. However, when applying the radiative forcing concept, nonradiative processes are ignored, which may lead to a misrepresentation of land cover change impact on climate." @default.
- W2098989215 created "2016-06-24" @default.
- W2098989215 creator A5013087895 @default.
- W2098989215 creator A5054940937 @default.
- W2098989215 date "2010-01-01" @default.
- W2098989215 modified "2023-10-04" @default.
- W2098989215 title "Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes" @default.
- W2098989215 cites W1496503081 @default.
- W2098989215 cites W1510242659 @default.
- W2098989215 cites W1664258466 @default.
- W2098989215 cites W1674733673 @default.
- W2098989215 cites W1965323106 @default.
- W2098989215 cites W1966630510 @default.
- W2098989215 cites W1995461421 @default.
- W2098989215 cites W1999355621 @default.
- W2098989215 cites W1999489737 @default.
- W2098989215 cites W2000539375 @default.
- W2098989215 cites W2002902271 @default.
- W2098989215 cites W2009412734 @default.
- W2098989215 cites W2012870863 @default.
- W2098989215 cites W2014634808 @default.
- W2098989215 cites W2019448968 @default.
- W2098989215 cites W2022224360 @default.
- W2098989215 cites W2022694587 @default.
- W2098989215 cites W2025555327 @default.
- W2098989215 cites W2043022643 @default.
- W2098989215 cites W2059163574 @default.
- W2098989215 cites W2062507025 @default.
- W2098989215 cites W2074059718 @default.
- W2098989215 cites W2076124820 @default.
- W2098989215 cites W2083618812 @default.
- W2098989215 cites W2086519645 @default.
- W2098989215 cites W2087022494 @default.
- W2098989215 cites W2087803085 @default.
- W2098989215 cites W2093009240 @default.
- W2098989215 cites W2094368610 @default.
- W2098989215 cites W2097054682 @default.
- W2098989215 cites W2106256460 @default.
- W2098989215 cites W2123855284 @default.
- W2098989215 cites W2127559745 @default.
- W2098989215 cites W2131278004 @default.
- W2098989215 cites W2134289299 @default.
- W2098989215 cites W2139813070 @default.
- W2098989215 cites W2158267301 @default.
- W2098989215 cites W2161851909 @default.
- W2098989215 cites W2165730768 @default.
- W2098989215 cites W2167523533 @default.
- W2098989215 doi "https://doi.org/10.1175/2009jcli3102.1" @default.
- W2098989215 hasPublicationYear "2010" @default.
- W2098989215 type Work @default.
- W2098989215 sameAs 2098989215 @default.
- W2098989215 citedByCount "417" @default.
- W2098989215 countsByYear W20989892152012 @default.
- W2098989215 countsByYear W20989892152013 @default.
- W2098989215 countsByYear W20989892152014 @default.
- W2098989215 countsByYear W20989892152015 @default.
- W2098989215 countsByYear W20989892152016 @default.
- W2098989215 countsByYear W20989892152017 @default.
- W2098989215 countsByYear W20989892152018 @default.
- W2098989215 countsByYear W20989892152019 @default.
- W2098989215 countsByYear W20989892152020 @default.
- W2098989215 countsByYear W20989892152021 @default.
- W2098989215 countsByYear W20989892152022 @default.
- W2098989215 countsByYear W20989892152023 @default.
- W2098989215 crossrefType "journal-article" @default.
- W2098989215 hasAuthorship W2098989215A5013087895 @default.
- W2098989215 hasAuthorship W2098989215A5054940937 @default.
- W2098989215 hasBestOaLocation W20989892151 @default.
- W2098989215 hasConcept C111368507 @default.
- W2098989215 hasConcept C115343472 @default.
- W2098989215 hasConcept C122690726 @default.
- W2098989215 hasConcept C127313418 @default.
- W2098989215 hasConcept C132651083 @default.
- W2098989215 hasConcept C142362112 @default.
- W2098989215 hasConcept C168754636 @default.
- W2098989215 hasConcept C176783924 @default.
- W2098989215 hasConcept C18903297 @default.
- W2098989215 hasConcept C195886398 @default.
- W2098989215 hasConcept C199360897 @default.
- W2098989215 hasConcept C2777399953 @default.
- W2098989215 hasConcept C39432304 @default.
- W2098989215 hasConcept C41008148 @default.
- W2098989215 hasConcept C4792198 @default.
- W2098989215 hasConcept C49204034 @default.
- W2098989215 hasConcept C52119013 @default.
- W2098989215 hasConcept C554144382 @default.
- W2098989215 hasConcept C86803240 @default.
- W2098989215 hasConcept C91586092 @default.
- W2098989215 hasConceptScore W2098989215C111368507 @default.
- W2098989215 hasConceptScore W2098989215C115343472 @default.
- W2098989215 hasConceptScore W2098989215C122690726 @default.
- W2098989215 hasConceptScore W2098989215C127313418 @default.
- W2098989215 hasConceptScore W2098989215C132651083 @default.
- W2098989215 hasConceptScore W2098989215C142362112 @default.
- W2098989215 hasConceptScore W2098989215C168754636 @default.
- W2098989215 hasConceptScore W2098989215C176783924 @default.
- W2098989215 hasConceptScore W2098989215C18903297 @default.
- W2098989215 hasConceptScore W2098989215C195886398 @default.