Matches in SemOpenAlex for { <https://semopenalex.org/work/W2098994378> ?p ?o ?g. }
- W2098994378 endingPage "288" @default.
- W2098994378 startingPage "276" @default.
- W2098994378 abstract "We investigate the sensitivity of the circulation and thermal structure of the martian atmosphere to numerical model resolution in a general circulation model (GCM) using the martian implementation (MarsWRF) of the planetWRF atmospheric model. We provide a description of the MarsWRF GCM and use it to study the global atmosphere at horizontal resolutions from 7.5° × 9° to 0.5° × 0.5°, encompassing the range from standard Mars GCMs to global mesoscale modeling. We find that while most of the gross-scale features of the circulation (the rough location of jets, the qualitative thermal structure, and the major large-scale features of the surface level winds) are insensitive to horizontal resolution over this range, several major features of the circulation are sensitive in detail. The northern winter polar circulation shows the greatest sensitivity, showing a continuous transition from a smooth polar winter jet at low resolution, to a distinct vertically “split” jet as resolution increases. The separation of the lower and middle atmosphere polar jet occurs at roughly 10 Pa, with the split jet structure developing in concert with the intensification of meridional jets at roughly 10 Pa and above 0.1 Pa. These meridional jets appear to represent the separation of lower and middle atmosphere mean overturning circulations (with the former being consistent with the usual concept of the “Hadley cell”). Further, the transition in polar jet structure is more sensitive to changes in zonal than meridional horizontal resolution, suggesting that representation of small-scale wave-mean flow interactions is more important than fine-scale representation of the meridional thermal gradient across the polar front. Increasing the horizontal resolution improves the match between the modeled thermal structure and the Mars Climate Sounder retrievals for northern winter high latitudes. While increased horizontal resolution also improves the simulation of the northern high latitudes at equinox, even the lowest model resolution considered here appears to do a good job for the southern winter and southern equinoctial pole (although in detail some discrepancies remain). These results suggest that studies of the northern winter jet (e.g., transient waves and cyclogenesis) will be more sensitive to global model resolution that those of the south (e.g., the confining dynamics of the southern polar vortex relevant to studies of argon transport). For surface winds, the major effect of increased horizontal resolution is in the superposition of circulations forced by local-scale topography upon the large-scale surface wind patterns. While passive predictions of dust lifting are generally insensitive to model horizontal resolution when no lifting threshold is considered, increasing the stress threshold produces significantly more lifting in higher resolution simulations with the generation of finer-scale, higher-stress winds due primarily to better-resolved topography. Considering the positive feedbacks expected for radiatively active dust lifting, we expect this bias to increase when such feedbacks are permitted." @default.
- W2098994378 created "2016-06-24" @default.
- W2098994378 creator A5020727212 @default.
- W2098994378 creator A5043754975 @default.
- W2098994378 creator A5079880645 @default.
- W2098994378 creator A5090644269 @default.
- W2098994378 date "2012-09-01" @default.
- W2098994378 modified "2023-10-01" @default.
- W2098994378 title "The impact of resolution on the dynamics of the martian global atmosphere: Varying resolution studies with the MarsWRF GCM" @default.
- W2098994378 cites W1526661693 @default.
- W2098994378 cites W1964357886 @default.
- W2098994378 cites W1966692830 @default.
- W2098994378 cites W1969061758 @default.
- W2098994378 cites W1969948219 @default.
- W2098994378 cites W1971679034 @default.
- W2098994378 cites W1983079246 @default.
- W2098994378 cites W1983710976 @default.
- W2098994378 cites W1992190078 @default.
- W2098994378 cites W1997670265 @default.
- W2098994378 cites W1999070801 @default.
- W2098994378 cites W2001791521 @default.
- W2098994378 cites W2003148180 @default.
- W2098994378 cites W2005007442 @default.
- W2098994378 cites W2005842828 @default.
- W2098994378 cites W2007878675 @default.
- W2098994378 cites W2007893690 @default.
- W2098994378 cites W2014840824 @default.
- W2098994378 cites W2018793733 @default.
- W2098994378 cites W2021350270 @default.
- W2098994378 cites W2028979275 @default.
- W2098994378 cites W2035085244 @default.
- W2098994378 cites W2043367660 @default.
- W2098994378 cites W2053394524 @default.
- W2098994378 cites W2068070404 @default.
- W2098994378 cites W2074882011 @default.
- W2098994378 cites W2076653816 @default.
- W2098994378 cites W2079367038 @default.
- W2098994378 cites W2080963604 @default.
- W2098994378 cites W2083271987 @default.
- W2098994378 cites W2087703239 @default.
- W2098994378 cites W2090201251 @default.
- W2098994378 cites W2093973012 @default.
- W2098994378 cites W2095336399 @default.
- W2098994378 cites W2099256287 @default.
- W2098994378 cites W2105924554 @default.
- W2098994378 cites W2108349851 @default.
- W2098994378 cites W2142766487 @default.
- W2098994378 cites W2144256286 @default.
- W2098994378 cites W2147924375 @default.
- W2098994378 cites W2170102990 @default.
- W2098994378 cites W2172524054 @default.
- W2098994378 cites W2985535663 @default.
- W2098994378 doi "https://doi.org/10.1016/j.icarus.2012.07.020" @default.
- W2098994378 hasPublicationYear "2012" @default.
- W2098994378 type Work @default.
- W2098994378 sameAs 2098994378 @default.
- W2098994378 citedByCount "95" @default.
- W2098994378 countsByYear W20989943782013 @default.
- W2098994378 countsByYear W20989943782014 @default.
- W2098994378 countsByYear W20989943782015 @default.
- W2098994378 countsByYear W20989943782016 @default.
- W2098994378 countsByYear W20989943782017 @default.
- W2098994378 countsByYear W20989943782018 @default.
- W2098994378 countsByYear W20989943782019 @default.
- W2098994378 countsByYear W20989943782020 @default.
- W2098994378 countsByYear W20989943782021 @default.
- W2098994378 countsByYear W20989943782022 @default.
- W2098994378 countsByYear W20989943782023 @default.
- W2098994378 crossrefType "journal-article" @default.
- W2098994378 hasAuthorship W2098994378A5020727212 @default.
- W2098994378 hasAuthorship W2098994378A5043754975 @default.
- W2098994378 hasAuthorship W2098994378A5079880645 @default.
- W2098994378 hasAuthorship W2098994378A5090644269 @default.
- W2098994378 hasConcept C111368507 @default.
- W2098994378 hasConcept C118365302 @default.
- W2098994378 hasConcept C119947313 @default.
- W2098994378 hasConcept C121332964 @default.
- W2098994378 hasConcept C123010829 @default.
- W2098994378 hasConcept C125405218 @default.
- W2098994378 hasConcept C127313418 @default.
- W2098994378 hasConcept C1276947 @default.
- W2098994378 hasConcept C132651083 @default.
- W2098994378 hasConcept C141452985 @default.
- W2098994378 hasConcept C143742823 @default.
- W2098994378 hasConcept C150284090 @default.
- W2098994378 hasConcept C153294291 @default.
- W2098994378 hasConcept C163861444 @default.
- W2098994378 hasConcept C18629457 @default.
- W2098994378 hasConcept C2778600265 @default.
- W2098994378 hasConcept C29705727 @default.
- W2098994378 hasConcept C39432304 @default.
- W2098994378 hasConcept C45095769 @default.
- W2098994378 hasConcept C49204034 @default.
- W2098994378 hasConcept C57879066 @default.
- W2098994378 hasConcept C65440619 @default.
- W2098994378 hasConcept C83260615 @default.
- W2098994378 hasConcept C87355193 @default.
- W2098994378 hasConcept C91586092 @default.