Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099077647> ?p ?o ?g. }
- W2099077647 endingPage "48" @default.
- W2099077647 startingPage "33" @default.
- W2099077647 abstract "System reliability is important for systems engineers, since it is directly related to a company's reputation, customer satisfaction, and system design costs. Improving system reliability has been an important task for the system engineers and a number of studies have been published to discuss methods for improving system reliability. For this purpose sensitivity analysis and fault diagnosis has been used in various studies, where identification of significant and problematic components plays an important role. Both sensitivity analysis and fault diagnosis require understanding the system structure and component relationships; and Bayesian networks (BN) have been shown to be an effective tool for modeling the systems and quantifying the component interactions. In this study, we use BN for sensitivity analysis and fault diagnosis to improve system reliability. We focus on the complex systems, where the number of components and component interactions can be very large. In this study, we first discuss sensitivity analysis in complex systems using BN, which can be used for identification of significant system components. Sensitivity analysis using BN is concerned with the question of how sensitive system reliability is to possible changes in the nodes in BN. In this paper we demonstrate that BN can be efficiently and effectively used for sensitivity analysis in complex system reliability. This study is the first that considers component reliabilities and uses BN for sensitivity analysis in complex systems. In this paper as a part of our method for sensitivity analysis, an efficient algorithm (SA) is introduced to perform sensitivity analysis in complex systems. Our SA algorithm is based on a graph traversal algorithm that can be effectively used in BN. The SA algorithm traverses the BN through the connected nodes and evaluates the reliabilities to perform sensitivity analysis. Our method helps the systems engineers understand the cause and effect relationships between system components and their reliability and discover the key components that have significant effects on system reliability. Once the key components are identified, system structure can be revised to improve the overall system reliability. Next we discuss fault diagnosis in complex systems and show how fault diagnosis can be used to improve complex system reliability. Due to component aging and environmental factors, the system components in real-life complex systems may fail or not function as expected. Such failures may cause unprecedented changes in the system reliability values and affect the reliability of not only the failed component, but also the overall system. One important issue in complex systems is that, the system engineers must process large amounts of information before making operational decisions. Since BN combine expert knowledge of the system with probabilistic theory for construction of effective diagnosis methodologies, they have been applied to fault diagnosis in various studies. In this paper, we present a new method for fault diagnosis in complex systems. Our method uses the complex system reliability to detect the faulty components. We continuously monitor the overall system reliability value, and our fault diagnosis mechanism is only triggered when significant changes to system reliability are detected. As part of our method, an efficient search algorithm is designed specifically for BN. This algorithm is empowered with popular heuristics. In this paper, we discuss how our method can be efficiently applied to complex systems since our search algorithm needs to check only a small portion of the system's components before detecting the failed one. We believe that our method provides system engineers with invaluable information to diagnose the faulty component and improve reliability in complex systems." @default.
- W2099077647 created "2016-06-24" @default.
- W2099077647 creator A5015567482 @default.
- W2099077647 creator A5026379933 @default.
- W2099077647 date "2009-01-01" @default.
- W2099077647 modified "2023-09-23" @default.
- W2099077647 title "Using Bayesian Approach For Sensitivity Analysis And Fault Diagnosis In Complex Systems" @default.
- W2099077647 cites W109146425 @default.
- W2099077647 cites W1479876366 @default.
- W2099077647 cites W1486848798 @default.
- W2099077647 cites W1513861746 @default.
- W2099077647 cites W1535481092 @default.
- W2099077647 cites W1556197242 @default.
- W2099077647 cites W1574029918 @default.
- W2099077647 cites W1594662352 @default.
- W2099077647 cites W1605914096 @default.
- W2099077647 cites W1608894329 @default.
- W2099077647 cites W1630188621 @default.
- W2099077647 cites W1675231743 @default.
- W2099077647 cites W1755360231 @default.
- W2099077647 cites W1796432650 @default.
- W2099077647 cites W183303257 @default.
- W2099077647 cites W1883865643 @default.
- W2099077647 cites W1971585360 @default.
- W2099077647 cites W1976102130 @default.
- W2099077647 cites W1981665800 @default.
- W2099077647 cites W1989926363 @default.
- W2099077647 cites W1990235636 @default.
- W2099077647 cites W1990411923 @default.
- W2099077647 cites W1992244517 @default.
- W2099077647 cites W2016919144 @default.
- W2099077647 cites W2019262216 @default.
- W2099077647 cites W2028170226 @default.
- W2099077647 cites W2049571606 @default.
- W2099077647 cites W2056687315 @default.
- W2099077647 cites W2068509236 @default.
- W2099077647 cites W2113676554 @default.
- W2099077647 cites W2124149894 @default.
- W2099077647 cites W2129946623 @default.
- W2099077647 cites W2159080219 @default.
- W2099077647 cites W2164351502 @default.
- W2099077647 doi "https://doi.org/10.5555/1609874.1609877" @default.
- W2099077647 hasPublicationYear "2009" @default.
- W2099077647 type Work @default.
- W2099077647 sameAs 2099077647 @default.
- W2099077647 citedByCount "6" @default.
- W2099077647 countsByYear W20990776472012 @default.
- W2099077647 countsByYear W20990776472013 @default.
- W2099077647 countsByYear W20990776472014 @default.
- W2099077647 countsByYear W20990776472016 @default.
- W2099077647 countsByYear W20990776472017 @default.
- W2099077647 crossrefType "journal-article" @default.
- W2099077647 hasAuthorship W2099077647A5015567482 @default.
- W2099077647 hasAuthorship W2099077647A5026379933 @default.
- W2099077647 hasConcept C107673813 @default.
- W2099077647 hasConcept C116834253 @default.
- W2099077647 hasConcept C119857082 @default.
- W2099077647 hasConcept C121332964 @default.
- W2099077647 hasConcept C124101348 @default.
- W2099077647 hasConcept C127313418 @default.
- W2099077647 hasConcept C127413603 @default.
- W2099077647 hasConcept C154945302 @default.
- W2099077647 hasConcept C163258240 @default.
- W2099077647 hasConcept C165205528 @default.
- W2099077647 hasConcept C168167062 @default.
- W2099077647 hasConcept C175551986 @default.
- W2099077647 hasConcept C200601418 @default.
- W2099077647 hasConcept C21200559 @default.
- W2099077647 hasConcept C24326235 @default.
- W2099077647 hasConcept C33724603 @default.
- W2099077647 hasConcept C41008148 @default.
- W2099077647 hasConcept C43214815 @default.
- W2099077647 hasConcept C47822265 @default.
- W2099077647 hasConcept C59822182 @default.
- W2099077647 hasConcept C62520636 @default.
- W2099077647 hasConcept C86803240 @default.
- W2099077647 hasConcept C97355855 @default.
- W2099077647 hasConceptScore W2099077647C107673813 @default.
- W2099077647 hasConceptScore W2099077647C116834253 @default.
- W2099077647 hasConceptScore W2099077647C119857082 @default.
- W2099077647 hasConceptScore W2099077647C121332964 @default.
- W2099077647 hasConceptScore W2099077647C124101348 @default.
- W2099077647 hasConceptScore W2099077647C127313418 @default.
- W2099077647 hasConceptScore W2099077647C127413603 @default.
- W2099077647 hasConceptScore W2099077647C154945302 @default.
- W2099077647 hasConceptScore W2099077647C163258240 @default.
- W2099077647 hasConceptScore W2099077647C165205528 @default.
- W2099077647 hasConceptScore W2099077647C168167062 @default.
- W2099077647 hasConceptScore W2099077647C175551986 @default.
- W2099077647 hasConceptScore W2099077647C200601418 @default.
- W2099077647 hasConceptScore W2099077647C21200559 @default.
- W2099077647 hasConceptScore W2099077647C24326235 @default.
- W2099077647 hasConceptScore W2099077647C33724603 @default.
- W2099077647 hasConceptScore W2099077647C41008148 @default.
- W2099077647 hasConceptScore W2099077647C43214815 @default.
- W2099077647 hasConceptScore W2099077647C47822265 @default.
- W2099077647 hasConceptScore W2099077647C59822182 @default.
- W2099077647 hasConceptScore W2099077647C62520636 @default.