Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099119910> ?p ?o ?g. }
- W2099119910 endingPage "234" @default.
- W2099119910 startingPage "225" @default.
- W2099119910 abstract "Objective: There is increasing interest in using electronic health records (EHRs) to identify subjects for genomic association studies, due in part to the availability of large amounts of clinical data and the expected cost efficiencies of subject identification. We describe the construction and validation of an EHR-based algorithm to identify subjects with age-related cataracts. Materials and methods: We used a multi-modal strategy consisting of structured database querying, natural language processing on free-text documents, and optical character recognition on scanned clinical images to identify cataract subjects and related cataract attributes. Extensive validation on 3657 subjects compared the multi-modal results to manual chart review. The algorithm was also implemented at participating electronic MEdical Records and GEnomics (eMERGE) institutions. Results: An EHR-based cataract phenotyping algorithm was successfully developed and validated, resulting in positive predictive values (PPVs) >95%. The multi-modal approach increased the identification of cataract subject attributes by a factor of three compared to single-mode approaches while maintaining high PPV. Components of the cataract algorithm were successfully deployed at three other institutions with similar accuracy. Discussion: A multi-modal strategy incorporating optical character recognition and natural language processing may increase the number of cases identified while maintaining similar PPVs. Such algorithms, however, require that the needed information be embedded within clinical documents. Conclusion: We have demonstrated that algorithms to identify and characterize cataracts can be developed utilizing data collected via the EHR. These algorithms provide a high level of accuracy even when implemented across multiple EHRs and institutional boundaries." @default.
- W2099119910 created "2016-06-24" @default.
- W2099119910 creator A5005286990 @default.
- W2099119910 creator A5011262460 @default.
- W2099119910 creator A5035389413 @default.
- W2099119910 creator A5041212198 @default.
- W2099119910 creator A5051691741 @default.
- W2099119910 creator A5057193820 @default.
- W2099119910 creator A5066473148 @default.
- W2099119910 creator A5068754205 @default.
- W2099119910 creator A5070908224 @default.
- W2099119910 creator A5076495147 @default.
- W2099119910 creator A5078143614 @default.
- W2099119910 creator A5084695825 @default.
- W2099119910 creator A5088183118 @default.
- W2099119910 date "2012-03-01" @default.
- W2099119910 modified "2023-10-07" @default.
- W2099119910 title "Importance of multi-modal approaches to effectively identify cataract cases from electronic health records" @default.
- W2099119910 cites W1428480121 @default.
- W2099119910 cites W1564630706 @default.
- W2099119910 cites W1644997609 @default.
- W2099119910 cites W166169566 @default.
- W2099119910 cites W1789824814 @default.
- W2099119910 cites W1871067837 @default.
- W2099119910 cites W1976147236 @default.
- W2099119910 cites W2011980051 @default.
- W2099119910 cites W2033782699 @default.
- W2099119910 cites W2045040568 @default.
- W2099119910 cites W2059880962 @default.
- W2099119910 cites W2060230142 @default.
- W2099119910 cites W2064337796 @default.
- W2099119910 cites W2064352736 @default.
- W2099119910 cites W2080714701 @default.
- W2099119910 cites W2091407170 @default.
- W2099119910 cites W2101747855 @default.
- W2099119910 cites W2107021160 @default.
- W2099119910 cites W2121920862 @default.
- W2099119910 cites W2128020792 @default.
- W2099119910 cites W2141475634 @default.
- W2099119910 cites W2142071150 @default.
- W2099119910 cites W2146089916 @default.
- W2099119910 cites W2150077252 @default.
- W2099119910 cites W2156782747 @default.
- W2099119910 cites W2158273172 @default.
- W2099119910 cites W2159584465 @default.
- W2099119910 cites W3106889297 @default.
- W2099119910 cites W4232875550 @default.
- W2099119910 cites W4249028973 @default.
- W2099119910 cites W2097657973 @default.
- W2099119910 doi "https://doi.org/10.1136/amiajnl-2011-000456" @default.
- W2099119910 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3277618" @default.
- W2099119910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22319176" @default.
- W2099119910 hasPublicationYear "2012" @default.
- W2099119910 type Work @default.
- W2099119910 sameAs 2099119910 @default.
- W2099119910 citedByCount "103" @default.
- W2099119910 countsByYear W20991199102012 @default.
- W2099119910 countsByYear W20991199102013 @default.
- W2099119910 countsByYear W20991199102014 @default.
- W2099119910 countsByYear W20991199102015 @default.
- W2099119910 countsByYear W20991199102016 @default.
- W2099119910 countsByYear W20991199102017 @default.
- W2099119910 countsByYear W20991199102018 @default.
- W2099119910 countsByYear W20991199102019 @default.
- W2099119910 countsByYear W20991199102020 @default.
- W2099119910 countsByYear W20991199102021 @default.
- W2099119910 countsByYear W20991199102022 @default.
- W2099119910 countsByYear W20991199102023 @default.
- W2099119910 crossrefType "journal-article" @default.
- W2099119910 hasAuthorship W2099119910A5005286990 @default.
- W2099119910 hasAuthorship W2099119910A5011262460 @default.
- W2099119910 hasAuthorship W2099119910A5035389413 @default.
- W2099119910 hasAuthorship W2099119910A5041212198 @default.
- W2099119910 hasAuthorship W2099119910A5051691741 @default.
- W2099119910 hasAuthorship W2099119910A5057193820 @default.
- W2099119910 hasAuthorship W2099119910A5066473148 @default.
- W2099119910 hasAuthorship W2099119910A5068754205 @default.
- W2099119910 hasAuthorship W2099119910A5070908224 @default.
- W2099119910 hasAuthorship W2099119910A5076495147 @default.
- W2099119910 hasAuthorship W2099119910A5078143614 @default.
- W2099119910 hasAuthorship W2099119910A5084695825 @default.
- W2099119910 hasAuthorship W2099119910A5088183118 @default.
- W2099119910 hasBestOaLocation W20991199101 @default.
- W2099119910 hasConcept C11413529 @default.
- W2099119910 hasConcept C116834253 @default.
- W2099119910 hasConcept C118487528 @default.
- W2099119910 hasConcept C119857082 @default.
- W2099119910 hasConcept C124101348 @default.
- W2099119910 hasConcept C136764020 @default.
- W2099119910 hasConcept C154945302 @default.
- W2099119910 hasConcept C185592680 @default.
- W2099119910 hasConcept C188027245 @default.
- W2099119910 hasConcept C204321447 @default.
- W2099119910 hasConcept C23123220 @default.
- W2099119910 hasConcept C2777855551 @default.
- W2099119910 hasConcept C2780225610 @default.
- W2099119910 hasConcept C41008148 @default.
- W2099119910 hasConcept C59822182 @default.