Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099129687> ?p ?o ?g. }
- W2099129687 endingPage "1542" @default.
- W2099129687 startingPage "1530" @default.
- W2099129687 abstract "We propose the use of support vector machines (SVMs) for automatic hyperspectral data classification and knowledge discovery. In the first stage of the study, we use SVMs for crop classification and analyze their performance in terms of efficiency and robustness, as compared to extensively used neural and fuzzy methods. Efficiency is assessed by evaluating accuracy and statistical differences in several scenes. Robustness is analyzed in terms of: (1) suitability to working conditions when a feature selection stage is not possible and (2) performance when different levels of Gaussian noise are introduced at their inputs. In the second stage of this work, we analyze the distribution of the support vectors (SVs) and perform sensitivity analysis on the best classifier in order to analyze the significance of the input spectral bands. For classification purposes, six hyperspectral images acquired with the 128-band HyMAP spectrometer during the DAISEX-1999 campaign are used. Six crop classes were labeled for each image. A reduced set of labeled samples is used to train the models, and the entire images are used to assess their performance. Several conclusions are drawn: (1) SVMs yield better outcomes than neural networks regarding accuracy, simplicity, and robustness; (2) training neural and neurofuzzy models is unfeasible when working with high-dimensional input spaces and great amounts of training data; (3) SVMs perform similarly for different training subsets with varying input dimension, which indicates that noisy bands are successfully detected; and (4) a valuable ranking of bands through sensitivity analysis is achieved." @default.
- W2099129687 created "2016-06-24" @default.
- W2099129687 creator A5000820727 @default.
- W2099129687 creator A5001982849 @default.
- W2099129687 creator A5008454143 @default.
- W2099129687 creator A5039052506 @default.
- W2099129687 creator A5063325355 @default.
- W2099129687 creator A5078307013 @default.
- W2099129687 creator A5081768850 @default.
- W2099129687 date "2004-07-01" @default.
- W2099129687 modified "2023-09-30" @default.
- W2099129687 title "Robust support vector method for hyperspectral data classification and knowledge discovery" @default.
- W2099129687 cites W109335163 @default.
- W2099129687 cites W1533756305 @default.
- W2099129687 cites W1676820704 @default.
- W2099129687 cites W1963946611 @default.
- W2099129687 cites W1971116306 @default.
- W2099129687 cites W2010735452 @default.
- W2099129687 cites W2019575783 @default.
- W2099129687 cites W2028143094 @default.
- W2099129687 cites W2036255459 @default.
- W2099129687 cites W2047189776 @default.
- W2099129687 cites W2055522016 @default.
- W2099129687 cites W2067057029 @default.
- W2099129687 cites W2078619499 @default.
- W2099129687 cites W2079019836 @default.
- W2099129687 cites W2087347434 @default.
- W2099129687 cites W2095190520 @default.
- W2099129687 cites W2098057602 @default.
- W2099129687 cites W2111018929 @default.
- W2099129687 cites W2112129724 @default.
- W2099129687 cites W2113754220 @default.
- W2099129687 cites W2115568737 @default.
- W2099129687 cites W2117463742 @default.
- W2099129687 cites W2118286367 @default.
- W2099129687 cites W2136236240 @default.
- W2099129687 cites W2136454596 @default.
- W2099129687 cites W2137343229 @default.
- W2099129687 cites W2139205074 @default.
- W2099129687 cites W2139212933 @default.
- W2099129687 cites W2146045786 @default.
- W2099129687 cites W2155881826 @default.
- W2099129687 cites W2163640899 @default.
- W2099129687 cites W2166426403 @default.
- W2099129687 cites W4239510810 @default.
- W2099129687 cites W4240768087 @default.
- W2099129687 cites W4300402905 @default.
- W2099129687 doi "https://doi.org/10.1109/tgrs.2004.827262" @default.
- W2099129687 hasPublicationYear "2004" @default.
- W2099129687 type Work @default.
- W2099129687 sameAs 2099129687 @default.
- W2099129687 citedByCount "251" @default.
- W2099129687 countsByYear W20991296872012 @default.
- W2099129687 countsByYear W20991296872013 @default.
- W2099129687 countsByYear W20991296872014 @default.
- W2099129687 countsByYear W20991296872015 @default.
- W2099129687 countsByYear W20991296872016 @default.
- W2099129687 countsByYear W20991296872017 @default.
- W2099129687 countsByYear W20991296872018 @default.
- W2099129687 countsByYear W20991296872019 @default.
- W2099129687 countsByYear W20991296872020 @default.
- W2099129687 countsByYear W20991296872021 @default.
- W2099129687 countsByYear W20991296872022 @default.
- W2099129687 countsByYear W20991296872023 @default.
- W2099129687 crossrefType "journal-article" @default.
- W2099129687 hasAuthorship W2099129687A5000820727 @default.
- W2099129687 hasAuthorship W2099129687A5001982849 @default.
- W2099129687 hasAuthorship W2099129687A5008454143 @default.
- W2099129687 hasAuthorship W2099129687A5039052506 @default.
- W2099129687 hasAuthorship W2099129687A5063325355 @default.
- W2099129687 hasAuthorship W2099129687A5078307013 @default.
- W2099129687 hasAuthorship W2099129687A5081768850 @default.
- W2099129687 hasConcept C104317684 @default.
- W2099129687 hasConcept C115961682 @default.
- W2099129687 hasConcept C119857082 @default.
- W2099129687 hasConcept C12267149 @default.
- W2099129687 hasConcept C124101348 @default.
- W2099129687 hasConcept C153180895 @default.
- W2099129687 hasConcept C154945302 @default.
- W2099129687 hasConcept C159078339 @default.
- W2099129687 hasConcept C185592680 @default.
- W2099129687 hasConcept C41008148 @default.
- W2099129687 hasConcept C50644808 @default.
- W2099129687 hasConcept C55493867 @default.
- W2099129687 hasConcept C63479239 @default.
- W2099129687 hasConcept C75294576 @default.
- W2099129687 hasConceptScore W2099129687C104317684 @default.
- W2099129687 hasConceptScore W2099129687C115961682 @default.
- W2099129687 hasConceptScore W2099129687C119857082 @default.
- W2099129687 hasConceptScore W2099129687C12267149 @default.
- W2099129687 hasConceptScore W2099129687C124101348 @default.
- W2099129687 hasConceptScore W2099129687C153180895 @default.
- W2099129687 hasConceptScore W2099129687C154945302 @default.
- W2099129687 hasConceptScore W2099129687C159078339 @default.
- W2099129687 hasConceptScore W2099129687C185592680 @default.
- W2099129687 hasConceptScore W2099129687C41008148 @default.
- W2099129687 hasConceptScore W2099129687C50644808 @default.
- W2099129687 hasConceptScore W2099129687C55493867 @default.