Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099161811> ?p ?o ?g. }
- W2099161811 endingPage "1271" @default.
- W2099161811 startingPage "1264" @default.
- W2099161811 abstract "The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells (ECs) seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood–brain barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a “parent” vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific ECs within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described technology can be used to create TEMS that recapitulate structural, functional, and physico-chemical elements of vascularized human tissue microenvironments in vitro." @default.
- W2099161811 created "2016-06-24" @default.
- W2099161811 creator A5025058075 @default.
- W2099161811 creator A5026473783 @default.
- W2099161811 creator A5029554781 @default.
- W2099161811 creator A5046612886 @default.
- W2099161811 creator A5055013543 @default.
- W2099161811 date "2014-07-16" @default.
- W2099161811 modified "2023-10-10" @default.
- W2099161811 title "Tissue-engineered microenvironment systems for modeling human vasculature" @default.
- W2099161811 cites W1968779484 @default.
- W2099161811 cites W1979665070 @default.
- W2099161811 cites W1980490524 @default.
- W2099161811 cites W1981030985 @default.
- W2099161811 cites W1981998846 @default.
- W2099161811 cites W1984780868 @default.
- W2099161811 cites W1990722372 @default.
- W2099161811 cites W1992967957 @default.
- W2099161811 cites W2001408101 @default.
- W2099161811 cites W2019283447 @default.
- W2099161811 cites W2021478257 @default.
- W2099161811 cites W2024353040 @default.
- W2099161811 cites W2025944561 @default.
- W2099161811 cites W2044264198 @default.
- W2099161811 cites W2047853787 @default.
- W2099161811 cites W2049291024 @default.
- W2099161811 cites W2057151160 @default.
- W2099161811 cites W2071264379 @default.
- W2099161811 cites W2074073922 @default.
- W2099161811 cites W2075262732 @default.
- W2099161811 cites W2090136117 @default.
- W2099161811 cites W2099361891 @default.
- W2099161811 cites W2100561704 @default.
- W2099161811 cites W2103047489 @default.
- W2099161811 cites W2122612027 @default.
- W2099161811 cites W2154251974 @default.
- W2099161811 cites W2155075033 @default.
- W2099161811 cites W2163149880 @default.
- W2099161811 doi "https://doi.org/10.1177/1535370214539228" @default.
- W2099161811 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4469377" @default.
- W2099161811 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25030480" @default.
- W2099161811 hasPublicationYear "2014" @default.
- W2099161811 type Work @default.
- W2099161811 sameAs 2099161811 @default.
- W2099161811 citedByCount "89" @default.
- W2099161811 countsByYear W20991618112015 @default.
- W2099161811 countsByYear W20991618112016 @default.
- W2099161811 countsByYear W20991618112017 @default.
- W2099161811 countsByYear W20991618112018 @default.
- W2099161811 countsByYear W20991618112019 @default.
- W2099161811 countsByYear W20991618112020 @default.
- W2099161811 countsByYear W20991618112021 @default.
- W2099161811 countsByYear W20991618112022 @default.
- W2099161811 countsByYear W20991618112023 @default.
- W2099161811 crossrefType "journal-article" @default.
- W2099161811 hasAuthorship W2099161811A5025058075 @default.
- W2099161811 hasAuthorship W2099161811A5026473783 @default.
- W2099161811 hasAuthorship W2099161811A5029554781 @default.
- W2099161811 hasAuthorship W2099161811A5046612886 @default.
- W2099161811 hasAuthorship W2099161811A5055013543 @default.
- W2099161811 hasBestOaLocation W20991618111 @default.
- W2099161811 hasConcept C136229726 @default.
- W2099161811 hasConcept C142724271 @default.
- W2099161811 hasConcept C165932988 @default.
- W2099161811 hasConcept C171250308 @default.
- W2099161811 hasConcept C185592680 @default.
- W2099161811 hasConcept C189165786 @default.
- W2099161811 hasConcept C192562407 @default.
- W2099161811 hasConcept C203014093 @default.
- W2099161811 hasConcept C2776107976 @default.
- W2099161811 hasConcept C2776436680 @default.
- W2099161811 hasConcept C2778271429 @default.
- W2099161811 hasConcept C2779540182 @default.
- W2099161811 hasConcept C2780394083 @default.
- W2099161811 hasConcept C2910429298 @default.
- W2099161811 hasConcept C3020616263 @default.
- W2099161811 hasConcept C49892992 @default.
- W2099161811 hasConcept C502942594 @default.
- W2099161811 hasConcept C71924100 @default.
- W2099161811 hasConcept C8673954 @default.
- W2099161811 hasConcept C86803240 @default.
- W2099161811 hasConcept C95444343 @default.
- W2099161811 hasConceptScore W2099161811C136229726 @default.
- W2099161811 hasConceptScore W2099161811C142724271 @default.
- W2099161811 hasConceptScore W2099161811C165932988 @default.
- W2099161811 hasConceptScore W2099161811C171250308 @default.
- W2099161811 hasConceptScore W2099161811C185592680 @default.
- W2099161811 hasConceptScore W2099161811C189165786 @default.
- W2099161811 hasConceptScore W2099161811C192562407 @default.
- W2099161811 hasConceptScore W2099161811C203014093 @default.
- W2099161811 hasConceptScore W2099161811C2776107976 @default.
- W2099161811 hasConceptScore W2099161811C2776436680 @default.
- W2099161811 hasConceptScore W2099161811C2778271429 @default.
- W2099161811 hasConceptScore W2099161811C2779540182 @default.
- W2099161811 hasConceptScore W2099161811C2780394083 @default.
- W2099161811 hasConceptScore W2099161811C2910429298 @default.
- W2099161811 hasConceptScore W2099161811C3020616263 @default.
- W2099161811 hasConceptScore W2099161811C49892992 @default.