Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099304856> ?p ?o ?g. }
- W2099304856 endingPage "37" @default.
- W2099304856 startingPage "27" @default.
- W2099304856 abstract "Understanding the underlying relationship between pedestrian injury severity outcomes and factors leading to more severe injuries is very important in addressing the problem of pedestrian safety. This research combines data mining and statistical regression methods to identify the main factors associated with the levels of pedestrian injury severity outcomes. This work relies on the analysis of two unique pedestrian injury severity datasets from New York City, US (2002–2006) and the City of Montreal, Canada (2003–2006). General injury severity models were estimated for each dataset and for sub-populations obtained through clustering analysis. This paper shows how the segmentation of the accident datasets helps to better understand the complex relationship between the injury severity outcomes and the contribution of geometric, built environment and socio-demographic factors. While using the same methodology for the two datasets, different techniques were tested. Within the New York dataset, a latent class with ordered probit method provides the best results. However, for Montreal, K-means with a multinomial logit model proves most appropriate. Among other results, it was found that pedestrian age, location type, driver age, vehicle type, driver alcohol involvement, lighting conditions, and several built environment characteristics influence the likelihood of fatal crashes. Finally, the research provides recommendations for policy makers, traffic engineers, and law enforcement in order to reduce the severity of pedestrian–vehicle collisions." @default.
- W2099304856 created "2016-06-24" @default.
- W2099304856 creator A5012716046 @default.
- W2099304856 creator A5018158882 @default.
- W2099304856 creator A5020040338 @default.
- W2099304856 creator A5076568601 @default.
- W2099304856 date "2013-04-01" @default.
- W2099304856 modified "2023-09-29" @default.
- W2099304856 title "A clustering regression approach: A comprehensive injury severity analysis of pedestrian–vehicle crashes in New York, US and Montreal, Canada" @default.
- W2099304856 cites W1964512993 @default.
- W2099304856 cites W1980888841 @default.
- W2099304856 cites W2013845817 @default.
- W2099304856 cites W2020399458 @default.
- W2099304856 cites W2023171043 @default.
- W2099304856 cites W2025401241 @default.
- W2099304856 cites W2026600011 @default.
- W2099304856 cites W2045233237 @default.
- W2099304856 cites W2050973892 @default.
- W2099304856 cites W2073618340 @default.
- W2099304856 cites W2076978163 @default.
- W2099304856 cites W2081462872 @default.
- W2099304856 cites W2145961774 @default.
- W2099304856 cites W2153233077 @default.
- W2099304856 cites W2161309151 @default.
- W2099304856 doi "https://doi.org/10.1016/j.ssci.2012.11.001" @default.
- W2099304856 hasPublicationYear "2013" @default.
- W2099304856 type Work @default.
- W2099304856 sameAs 2099304856 @default.
- W2099304856 citedByCount "209" @default.
- W2099304856 countsByYear W20993048562013 @default.
- W2099304856 countsByYear W20993048562014 @default.
- W2099304856 countsByYear W20993048562015 @default.
- W2099304856 countsByYear W20993048562016 @default.
- W2099304856 countsByYear W20993048562017 @default.
- W2099304856 countsByYear W20993048562018 @default.
- W2099304856 countsByYear W20993048562019 @default.
- W2099304856 countsByYear W20993048562020 @default.
- W2099304856 countsByYear W20993048562021 @default.
- W2099304856 countsByYear W20993048562022 @default.
- W2099304856 countsByYear W20993048562023 @default.
- W2099304856 crossrefType "journal-article" @default.
- W2099304856 hasAuthorship W2099304856A5012716046 @default.
- W2099304856 hasAuthorship W2099304856A5018158882 @default.
- W2099304856 hasAuthorship W2099304856A5020040338 @default.
- W2099304856 hasAuthorship W2099304856A5076568601 @default.
- W2099304856 hasBestOaLocation W20993048562 @default.
- W2099304856 hasConcept C119857082 @default.
- W2099304856 hasConcept C127413603 @default.
- W2099304856 hasConcept C142724271 @default.
- W2099304856 hasConcept C152877465 @default.
- W2099304856 hasConcept C154945302 @default.
- W2099304856 hasConcept C166735990 @default.
- W2099304856 hasConcept C187155963 @default.
- W2099304856 hasConcept C190385971 @default.
- W2099304856 hasConcept C22212356 @default.
- W2099304856 hasConcept C2777113093 @default.
- W2099304856 hasConcept C3017944768 @default.
- W2099304856 hasConcept C41008148 @default.
- W2099304856 hasConcept C526869908 @default.
- W2099304856 hasConcept C71924100 @default.
- W2099304856 hasConcept C73555534 @default.
- W2099304856 hasConcept C77595967 @default.
- W2099304856 hasConcept C99454951 @default.
- W2099304856 hasConceptScore W2099304856C119857082 @default.
- W2099304856 hasConceptScore W2099304856C127413603 @default.
- W2099304856 hasConceptScore W2099304856C142724271 @default.
- W2099304856 hasConceptScore W2099304856C152877465 @default.
- W2099304856 hasConceptScore W2099304856C154945302 @default.
- W2099304856 hasConceptScore W2099304856C166735990 @default.
- W2099304856 hasConceptScore W2099304856C187155963 @default.
- W2099304856 hasConceptScore W2099304856C190385971 @default.
- W2099304856 hasConceptScore W2099304856C22212356 @default.
- W2099304856 hasConceptScore W2099304856C2777113093 @default.
- W2099304856 hasConceptScore W2099304856C3017944768 @default.
- W2099304856 hasConceptScore W2099304856C41008148 @default.
- W2099304856 hasConceptScore W2099304856C526869908 @default.
- W2099304856 hasConceptScore W2099304856C71924100 @default.
- W2099304856 hasConceptScore W2099304856C73555534 @default.
- W2099304856 hasConceptScore W2099304856C77595967 @default.
- W2099304856 hasConceptScore W2099304856C99454951 @default.
- W2099304856 hasLocation W20993048561 @default.
- W2099304856 hasLocation W20993048562 @default.
- W2099304856 hasOpenAccess W2099304856 @default.
- W2099304856 hasPrimaryLocation W20993048561 @default.
- W2099304856 hasRelatedWork W1526385746 @default.
- W2099304856 hasRelatedWork W2001576162 @default.
- W2099304856 hasRelatedWork W2008439310 @default.
- W2099304856 hasRelatedWork W2068676882 @default.
- W2099304856 hasRelatedWork W2079296598 @default.
- W2099304856 hasRelatedWork W2111049226 @default.
- W2099304856 hasRelatedWork W2271471753 @default.
- W2099304856 hasRelatedWork W2974050692 @default.
- W2099304856 hasRelatedWork W3034116402 @default.
- W2099304856 hasRelatedWork W3097828795 @default.
- W2099304856 hasVolume "54" @default.
- W2099304856 isParatext "false" @default.
- W2099304856 isRetracted "false" @default.
- W2099304856 magId "2099304856" @default.