Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099349620> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2099349620 abstract "This paper describes a successful but challenging application of data mining in the railway industry. The objective is to optimize maintenance and operation of trains through prognostics of wheel failures. In addition to reducing maintenance costs, the proposed technology will help improve railway safety and augment throughput. Building on established techniques from data mining and machine learning, we present a methodology to learn models to predict train wheel failures from readily available operational and maintenance data. This methodology addresses various data mining tasks such as automatic labeling, feature extraction, model building, model fusion, and evaluation. After a detailed description of the methodology, we report results from large-scale experiments. These results clearly show the great potential of this innovative application of data mining in the railway industry." @default.
- W2099349620 created "2016-06-24" @default.
- W2099349620 creator A5042654112 @default.
- W2099349620 creator A5079634540 @default.
- W2099349620 date "2005-08-21" @default.
- W2099349620 modified "2023-10-15" @default.
- W2099349620 title "Learning to predict train wheel failures" @default.
- W2099349620 cites W1588282782 @default.
- W2099349620 cites W1605688901 @default.
- W2099349620 cites W1636521571 @default.
- W2099349620 cites W2023294425 @default.
- W2099349620 cites W2039207944 @default.
- W2099349620 cites W2040615655 @default.
- W2099349620 cites W2100805904 @default.
- W2099349620 cites W2147169507 @default.
- W2099349620 cites W2167793421 @default.
- W2099349620 doi "https://doi.org/10.1145/1081870.1081929" @default.
- W2099349620 hasPublicationYear "2005" @default.
- W2099349620 type Work @default.
- W2099349620 sameAs 2099349620 @default.
- W2099349620 citedByCount "59" @default.
- W2099349620 countsByYear W20993496202012 @default.
- W2099349620 countsByYear W20993496202013 @default.
- W2099349620 countsByYear W20993496202014 @default.
- W2099349620 countsByYear W20993496202015 @default.
- W2099349620 countsByYear W20993496202016 @default.
- W2099349620 countsByYear W20993496202017 @default.
- W2099349620 countsByYear W20993496202018 @default.
- W2099349620 countsByYear W20993496202019 @default.
- W2099349620 countsByYear W20993496202020 @default.
- W2099349620 countsByYear W20993496202021 @default.
- W2099349620 countsByYear W20993496202022 @default.
- W2099349620 countsByYear W20993496202023 @default.
- W2099349620 crossrefType "proceedings-article" @default.
- W2099349620 hasAuthorship W2099349620A5042654112 @default.
- W2099349620 hasAuthorship W2099349620A5079634540 @default.
- W2099349620 hasBestOaLocation W20993496202 @default.
- W2099349620 hasConcept C119857082 @default.
- W2099349620 hasConcept C124101348 @default.
- W2099349620 hasConcept C127413603 @default.
- W2099349620 hasConcept C129364497 @default.
- W2099349620 hasConcept C138885662 @default.
- W2099349620 hasConcept C154945302 @default.
- W2099349620 hasConcept C190839683 @default.
- W2099349620 hasConcept C205649164 @default.
- W2099349620 hasConcept C2776401178 @default.
- W2099349620 hasConcept C41008148 @default.
- W2099349620 hasConcept C41895202 @default.
- W2099349620 hasConcept C52622490 @default.
- W2099349620 hasConcept C58640448 @default.
- W2099349620 hasConcept C67186912 @default.
- W2099349620 hasConcept C77088390 @default.
- W2099349620 hasConceptScore W2099349620C119857082 @default.
- W2099349620 hasConceptScore W2099349620C124101348 @default.
- W2099349620 hasConceptScore W2099349620C127413603 @default.
- W2099349620 hasConceptScore W2099349620C129364497 @default.
- W2099349620 hasConceptScore W2099349620C138885662 @default.
- W2099349620 hasConceptScore W2099349620C154945302 @default.
- W2099349620 hasConceptScore W2099349620C190839683 @default.
- W2099349620 hasConceptScore W2099349620C205649164 @default.
- W2099349620 hasConceptScore W2099349620C2776401178 @default.
- W2099349620 hasConceptScore W2099349620C41008148 @default.
- W2099349620 hasConceptScore W2099349620C41895202 @default.
- W2099349620 hasConceptScore W2099349620C52622490 @default.
- W2099349620 hasConceptScore W2099349620C58640448 @default.
- W2099349620 hasConceptScore W2099349620C67186912 @default.
- W2099349620 hasConceptScore W2099349620C77088390 @default.
- W2099349620 hasLocation W20993496201 @default.
- W2099349620 hasLocation W20993496202 @default.
- W2099349620 hasOpenAccess W2099349620 @default.
- W2099349620 hasPrimaryLocation W20993496201 @default.
- W2099349620 hasRelatedWork W2144291498 @default.
- W2099349620 hasRelatedWork W2168646784 @default.
- W2099349620 hasRelatedWork W2310476526 @default.
- W2099349620 hasRelatedWork W2370073012 @default.
- W2099349620 hasRelatedWork W2466930957 @default.
- W2099349620 hasRelatedWork W2535730979 @default.
- W2099349620 hasRelatedWork W3182014137 @default.
- W2099349620 hasRelatedWork W3213192587 @default.
- W2099349620 hasRelatedWork W4386567722 @default.
- W2099349620 hasRelatedWork W2030958945 @default.
- W2099349620 isParatext "false" @default.
- W2099349620 isRetracted "false" @default.
- W2099349620 magId "2099349620" @default.
- W2099349620 workType "article" @default.