Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099407510> ?p ?o ?g. }
- W2099407510 endingPage "2900" @default.
- W2099407510 startingPage "2878" @default.
- W2099407510 abstract "This is the first of a series of papers which describe the functional-integral approach to the study of the statistical and kinetic properties of nonequilibrium quantum fields in flat and curved spacetimes. In this paper we treat a system of self-interacting bosons described by ensuremath{lambda}${ensuremath{varphi}}^{4}$ scalar fields in flat space. We adopt the closed-time-path (CTP or ``in-in'') functional formalism and use a two-particle irreducible (2PI) representation for the effective action. These formalisms allow for a full account of the dynamics of quantum fields, and put the correlation functions on an equal footing with the mean fields. By assuming a thermal distribution we recover the real-time finite-temperature theory as a special case. By requiring the CTP effective action to be stationary with respect to variations of the correlation functions we obtain an infinite set of coupled equations which is the quantum-field-theoretical generalization of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. Truncation of this series leads to dissipative characteristics in the subsystem. In this context we discuss the nature of dissipation in interacting quantum fields.To one-loop order in a perturbative expansion of the CTP effective action, the 2PI formalism yields results equivalent to the leading 1/N expansion for an O(N)-symmetric scalar field. To higher-loop order we introduce a two-time approximation to separate the quantum-field effects of radiative correction and renormalization from the statistical-kinetic effects of collisions and relaxation. In the weak-coupling quasiuniform limit, the system of nonequilibrium quantum fields can subscribe to a kinetic theory description wherein the propagators are represented in terms of relativistic Wigner distribution functions. From a two-loop calculation we derive the Boltzmann equation for the distribution function and the gap equation for the effective mass of the quasiparticles. One can define an entropy function for the quantum gas of quasiparticles which satisfies the H theorem. We also calculate the limits to the validity of the binary collision approximation from a three-loop analysis. The theoretical framework established here can be generalized to nonconstant background fields and for curved spacetimes." @default.
- W2099407510 created "2016-06-24" @default.
- W2099407510 creator A5056163037 @default.
- W2099407510 creator A5063965659 @default.
- W2099407510 date "1988-05-15" @default.
- W2099407510 modified "2023-10-18" @default.
- W2099407510 title "Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann equation" @default.
- W2099407510 cites W1968499067 @default.
- W2099407510 cites W1973142028 @default.
- W2099407510 cites W1973787974 @default.
- W2099407510 cites W1973861971 @default.
- W2099407510 cites W1974162733 @default.
- W2099407510 cites W1977125444 @default.
- W2099407510 cites W1978959383 @default.
- W2099407510 cites W1983598244 @default.
- W2099407510 cites W1984586316 @default.
- W2099407510 cites W1985301714 @default.
- W2099407510 cites W1987881172 @default.
- W2099407510 cites W1988114999 @default.
- W2099407510 cites W1988440864 @default.
- W2099407510 cites W1988479801 @default.
- W2099407510 cites W1990062504 @default.
- W2099407510 cites W1992204683 @default.
- W2099407510 cites W1994554532 @default.
- W2099407510 cites W2002927963 @default.
- W2099407510 cites W2007543703 @default.
- W2099407510 cites W2008860843 @default.
- W2099407510 cites W2009902266 @default.
- W2099407510 cites W2012330146 @default.
- W2099407510 cites W2012869970 @default.
- W2099407510 cites W2013927937 @default.
- W2099407510 cites W2018512043 @default.
- W2099407510 cites W2018621138 @default.
- W2099407510 cites W2020314961 @default.
- W2099407510 cites W2020543863 @default.
- W2099407510 cites W2023032649 @default.
- W2099407510 cites W2024983299 @default.
- W2099407510 cites W2026744753 @default.
- W2099407510 cites W2032001022 @default.
- W2099407510 cites W2033786521 @default.
- W2099407510 cites W2034224352 @default.
- W2099407510 cites W2036803404 @default.
- W2099407510 cites W2037288070 @default.
- W2099407510 cites W2039350533 @default.
- W2099407510 cites W2048489934 @default.
- W2099407510 cites W2048714978 @default.
- W2099407510 cites W2051780581 @default.
- W2099407510 cites W2052784716 @default.
- W2099407510 cites W2054857516 @default.
- W2099407510 cites W2059311079 @default.
- W2099407510 cites W2060230260 @default.
- W2099407510 cites W2061558188 @default.
- W2099407510 cites W2066208708 @default.
- W2099407510 cites W2067103200 @default.
- W2099407510 cites W2070953406 @default.
- W2099407510 cites W2070968852 @default.
- W2099407510 cites W2071588342 @default.
- W2099407510 cites W2071706151 @default.
- W2099407510 cites W2073869774 @default.
- W2099407510 cites W2075009320 @default.
- W2099407510 cites W2078085046 @default.
- W2099407510 cites W2078131046 @default.
- W2099407510 cites W2078734727 @default.
- W2099407510 cites W2087967028 @default.
- W2099407510 cites W2090386790 @default.
- W2099407510 cites W2092431053 @default.
- W2099407510 cites W2093024861 @default.
- W2099407510 cites W2094116723 @default.
- W2099407510 cites W2094438378 @default.
- W2099407510 cites W2110023503 @default.
- W2099407510 cites W2113006325 @default.
- W2099407510 cites W2117128933 @default.
- W2099407510 cites W2118733778 @default.
- W2099407510 cites W2120309232 @default.
- W2099407510 cites W2126747732 @default.
- W2099407510 cites W2134251287 @default.
- W2099407510 cites W2139558168 @default.
- W2099407510 cites W2146478425 @default.
- W2099407510 cites W2177148917 @default.
- W2099407510 cites W2323789656 @default.
- W2099407510 cites W3165898261 @default.
- W2099407510 cites W4231362780 @default.
- W2099407510 cites W4235434581 @default.
- W2099407510 cites W4245063004 @default.
- W2099407510 cites W4376849742 @default.
- W2099407510 cites W2042761307 @default.
- W2099407510 doi "https://doi.org/10.1103/physrevd.37.2878" @default.
- W2099407510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9958563" @default.
- W2099407510 hasPublicationYear "1988" @default.
- W2099407510 type Work @default.
- W2099407510 sameAs 2099407510 @default.
- W2099407510 citedByCount "441" @default.
- W2099407510 countsByYear W20994075102012 @default.
- W2099407510 countsByYear W20994075102013 @default.
- W2099407510 countsByYear W20994075102014 @default.
- W2099407510 countsByYear W20994075102015 @default.
- W2099407510 countsByYear W20994075102016 @default.
- W2099407510 countsByYear W20994075102017 @default.