Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099463721> ?p ?o ?g. }
- W2099463721 endingPage "283" @default.
- W2099463721 startingPage "268" @default.
- W2099463721 abstract "A multi-scale modeling framework combining finite volume method (FVM) and lattice Boltzmann method (LBM) previously developed by our group is used to predict electrochemical transport reaction in proton exchange membrane fuel cell (PEMFC) cathode with a parallel gas channel (GC), a gas diffusion layer (GDL) with porous structures and a catalyst layer (CL) with idealized microstructures. In this framework, the PEMFC cathode is divided into two sub-domains, one is GC and the other contains GDL and CL. The FVM is used to simulate transport phenomena in the GC sub-domain, while the LBM is employed for pore-scale transport phenomena in the GDL and CL as well as proton conduction in the CL in the other sub-domain. Two reconstruction operators are adopted to transfer macro density, velocities and concentration in the FVM to density distribution functions and concentration distribution functions in the LBM at the interface between the two sub-domains. Simulation results show that the coupled (hybrid) simulation strategy developed is able to predict transport phenomena in the GC and to capture the pore-scale transport processes in porous GDL and CL. In addition, some techniques to save the computational resources and to improve the efficiency of the coupled (hybrid) simulation strategy are discussed." @default.
- W2099463721 created "2016-06-24" @default.
- W2099463721 creator A5009783734 @default.
- W2099463721 creator A5010738468 @default.
- W2099463721 creator A5037989560 @default.
- W2099463721 creator A5060523810 @default.
- W2099463721 creator A5070590431 @default.
- W2099463721 creator A5087765996 @default.
- W2099463721 date "2013-08-01" @default.
- W2099463721 modified "2023-10-01" @default.
- W2099463721 title "Multi-scale modeling of proton exchange membrane fuel cell by coupling finite volume method and lattice Boltzmann method" @default.
- W2099463721 cites W1653172998 @default.
- W2099463721 cites W1970533383 @default.
- W2099463721 cites W1970779109 @default.
- W2099463721 cites W1978722317 @default.
- W2099463721 cites W1978990551 @default.
- W2099463721 cites W1980196589 @default.
- W2099463721 cites W1985145914 @default.
- W2099463721 cites W1998030060 @default.
- W2099463721 cites W2006821394 @default.
- W2099463721 cites W2017353522 @default.
- W2099463721 cites W2018799578 @default.
- W2099463721 cites W2026996718 @default.
- W2099463721 cites W2032507170 @default.
- W2099463721 cites W2037410791 @default.
- W2099463721 cites W2044307855 @default.
- W2099463721 cites W2054041788 @default.
- W2099463721 cites W2060081923 @default.
- W2099463721 cites W2060179955 @default.
- W2099463721 cites W2062688392 @default.
- W2099463721 cites W2066060292 @default.
- W2099463721 cites W2070855066 @default.
- W2099463721 cites W2072567229 @default.
- W2099463721 cites W2077001925 @default.
- W2099463721 cites W2081388881 @default.
- W2099463721 cites W2082159776 @default.
- W2099463721 cites W2097981563 @default.
- W2099463721 cites W2099122713 @default.
- W2099463721 cites W2099580574 @default.
- W2099463721 cites W2102392244 @default.
- W2099463721 cites W2105594313 @default.
- W2099463721 cites W2111368810 @default.
- W2099463721 cites W2115512876 @default.
- W2099463721 cites W2117115053 @default.
- W2099463721 cites W2117242079 @default.
- W2099463721 cites W2121788117 @default.
- W2099463721 cites W2123947750 @default.
- W2099463721 cites W2125234377 @default.
- W2099463721 cites W2132319644 @default.
- W2099463721 cites W2140032282 @default.
- W2099463721 cites W2148891011 @default.
- W2099463721 cites W2156304549 @default.
- W2099463721 cites W2162732854 @default.
- W2099463721 cites W2166047055 @default.
- W2099463721 cites W2170800066 @default.
- W2099463721 cites W3104198548 @default.
- W2099463721 cites W4244484702 @default.
- W2099463721 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.048" @default.
- W2099463721 hasPublicationYear "2013" @default.
- W2099463721 type Work @default.
- W2099463721 sameAs 2099463721 @default.
- W2099463721 citedByCount "97" @default.
- W2099463721 countsByYear W20994637212013 @default.
- W2099463721 countsByYear W20994637212014 @default.
- W2099463721 countsByYear W20994637212015 @default.
- W2099463721 countsByYear W20994637212016 @default.
- W2099463721 countsByYear W20994637212017 @default.
- W2099463721 countsByYear W20994637212018 @default.
- W2099463721 countsByYear W20994637212019 @default.
- W2099463721 countsByYear W20994637212020 @default.
- W2099463721 countsByYear W20994637212021 @default.
- W2099463721 countsByYear W20994637212022 @default.
- W2099463721 countsByYear W20994637212023 @default.
- W2099463721 crossrefType "journal-article" @default.
- W2099463721 hasAuthorship W2099463721A5009783734 @default.
- W2099463721 hasAuthorship W2099463721A5010738468 @default.
- W2099463721 hasAuthorship W2099463721A5037989560 @default.
- W2099463721 hasAuthorship W2099463721A5060523810 @default.
- W2099463721 hasAuthorship W2099463721A5070590431 @default.
- W2099463721 hasAuthorship W2099463721A5087765996 @default.
- W2099463721 hasConcept C121332964 @default.
- W2099463721 hasConcept C132319479 @default.
- W2099463721 hasConcept C147789679 @default.
- W2099463721 hasConcept C172100665 @default.
- W2099463721 hasConcept C185592680 @default.
- W2099463721 hasConcept C192562407 @default.
- W2099463721 hasConcept C21821499 @default.
- W2099463721 hasConcept C41625074 @default.
- W2099463721 hasConcept C49110097 @default.
- W2099463721 hasConcept C50478463 @default.
- W2099463721 hasConcept C55493867 @default.
- W2099463721 hasConcept C57879066 @default.
- W2099463721 hasConcept C92718894 @default.
- W2099463721 hasConcept C97355855 @default.
- W2099463721 hasConceptScore W2099463721C121332964 @default.
- W2099463721 hasConceptScore W2099463721C132319479 @default.
- W2099463721 hasConceptScore W2099463721C147789679 @default.
- W2099463721 hasConceptScore W2099463721C172100665 @default.